





ABSTRACT

Recent investigations have considered whether it is possible to achieve early detection
of greenhouse-gas-induced climate change by observing changes in ocean variables. In this
study, we use model data to assess some of the uncertainties involved in estimating when we
could expect to detect ocean greenhouse warming signals. We distinguish between detection
periods and detection times. As defined here, detection period is the lengih of a climate time
series which must be available in order to detect a given linear trend in the presence of the
natural climate variability. Detection peried is defined in model years and is independent
of reference time and the real time evolution of the signal. Detection time is computed for
an actual time-evolving signal from a greenhouse warming experiment and depends on the
experiment’s start date.

Two sources of uncertainty are considered - those associated with the level of natural vari-
ability or noise, and those associated with the time-evolving signals. We analyse the ocean
signal and noise for spatially-averaged ocean circulation indices such as ice volume, heat and
fresh water fluxes, rate of deep water formation, salinity, temperature, and transport of mass.
The signals for these quantities are taken from recent time-dependent greenhouse warming
experiments performed by the Hamburg group with a coupled ocean-atmosphere General
Circulation Model. The time-dependent greenhouse gas increase in these experiments was
specified in accordance with Scenario A of the Intergovernmental Panel on Climate Change
(IPCC). The natural variability noise is derived from a 300-year control run performed with
the same coupled atmosphere-ocean model and from two long (> 3,000 year) stochastic fore-
ing experiments in which an uncoupled ocean model was forced by white-noise surface flux
variations. In the first experiment the stochastic forcing was restricted to the fresh water
fluxes, while in the second experiment the ocean model was additionally forced by variations
in wind stress and heat fluxes. The mean states and ocean variability are very different in
the three natural variability integrations.

A suite of greenhouse warming simulations with identical forcing but different initial
conditions reveals that the signal estimated from these experiments may evolve in noticeably
different ways for some ocean variables depending on the initial state. The combined signal
and noise uncertainties translate into large uncertainties in estimates of detection time.
Nevertheless, we find that ocean variables which are highly sensitive indicators of surface
conditions, such as convective overturning in the North Atlantic, have shorter signal detection
times (35-65 years) than deep-ocean indicators (= 100 years).

We investigate also whether the use of a multivariate detection vector increases the
probability of early detection. We find that this can vield detection times of 35-60 years
(relative to a 1985 reference date) if signal and noise are projected onto a common “guess
pattern” which describes the expected signal direction. Optimization of the signal-to-noise
ratio by (spatial) rotation in the direction of low noise components of the stochastic forcing
experiments vields a further reduction in detection time (to 10-45 years). However, rotation
in space alone does not guarantee an improvement of the signal-to-noise ratio for a time-
dependent signal. This requires an ‘optimal fingerprint’ strategy in which the detection
pattern (fingerprint) is rotated in both space and time.



1 Introduction

Until recently, most of our information concerning the response of the climate system to
greenhouse-gas (GHG) forcing has been obtained from experiments which have investigated
the equilibrium response to a step-function doubling of CO; (e.g. Schlesinger and Mitchell,
1987; Mitchell et al_, 1990). Most of these experiments were pﬂ'ftlnﬂed with an atmospheric
General Circulation Model (GCM) coupled to a model of the oceanic mixed-layer (Man-
abe and Stouffer, 1980; Hansen et al., 1984; Washington and Meehl, 1984}, and generally
integrated for two or three decades. Given the rapid response time of the oceanic mixed-
layer (< 10 years), such simulations can be integrated to a statistical equilibrium state in
a relatively short time. Signal-to-noise properties of the experiment are then investigated
for the equilibrium state, using stationary time samples from both control and perturbation
experiments (e.g. Wigley and Jones, 1981; Barnett, 1986; Santer et al_, 1991).

With improved computer capabilities, it is now possible Lo use state-of-the-art coupled
atmosphere-ocean models to examine the more relevant question of the climate response to
time-dependent changes in greenhouse gases (Stouffer et al., 1989; Washington and Meehl,
1989; Manabe et al., 1991; Cubasch et al., 1992). These models simulate the uptake and
transport of heat by the deep ocean, which has characteristic time scales of centuries or longer
(Mikolajewicz et al., 1990). The time-dependence of the forcing and the slow response of
the deep ocean introduce a time dimension to the problem of estimating signal-to-noise
properties. The problem is to determine whether the trend in the signal (or its anticipated
time evolution) can be distinguished statistically from the internally-generated noise of the
coupled ocean-atmosphere systemn on the relevant decadal to century time scales. Both
paleoclimate data (e.g., Crowley and North, 1991) and model studies {Mikolajewicz and
Maier-Reimer, 1990; Lorenz, 1991; Wigley and Raper, 1991; Zebiak and Cane, 1991} indicate
that the amplitude of temperature changes due to internally-generated natural variability
can be large on these time scales. In order to detect a time-evolving climate signal due to
changes in GHG concentrations, it is therefore crucial to obtain reliable estimates of the
low-frequency noise of natural climatic variability. Such estimates can be obtained from
four sources, which we consider briefly below: instrumental and palecclimate data records,
noise-forced energy balance models (EBMs), fully-coupled atmosphere-ocean GCMs, and
stochastically-forced ocean GUMs.



The first source, paleoclimate records with annual resolution, is available from a number
of different proxies, such as corals, laminated sediments, ice cores, and tree rings (see, e.g.,
Dansgaard et al., 1975, Bradley, 1984; Bradley and Jones, 1992; Briffa et al., 1990, 1992;
Crowley and North, 1991). However, unravelling the history of climatic variability contained
in such records is not a straightforward task. The spatial covéra,ge is poor for paleoclimate
data with annual resolution, and it is difficult to date and cross-check the climate information
from different locations or different proxy sources, or to extract the climate signal from
the noise introduced by other, non-climatic factors. The reconstruction of a satisfactory,
spatially-coherent picture of climate variability over the past 1,000 years is not yet possible

and remains a challenge for the future.

Simple numerical models provide a second means of investigating the low-frequency noise
properties of the climate system. Some of the first studies of noise behavior on decadal
to century time scales involved stochastic forcing of energy balance models (e.g. Hassel-
mann, 1976; Lemke, 1977) or idealized models of atmospheric flow (Lorenz, 1984). More
recently, Wigley and Raper (1990, 1991) used an EBM with an upwelling-diffusive ocean
and atmospheric stochastic forcing in order to examine the internally-generated variability
of globally-averaged temperature, and Kim and North (1991) considered the temporal and

spatial variability of surface temperature in a noise-forced zonal EBM.

These models introduce strong physical simplifications in order to achieve sufficient com-
putational efficiency, thus making it possible to perform long integrations and detailed studies
of the sensitivity to varying parameterizations. While such models reproduce the principal
characteristics of the red natural variability spectrum, they are not able to simulate realis-
tically processes such as the horizontal and vertical transport of heat, salt, and momentum
in the global ocean, which probably govern the century time scale variability of the real
climate system. Ideally (in the absence of real-world data series of sufficient length), it
would be desirable to determine the low-frequency natural variability by performing long (=
1,000 years) integrations with fully-coupled atmosphere-ocean GCMs, the third method of
estimating natural climate variability mentioned above. Due to computational limitations,
~ however, state-of-the-art coupled models generally have been integrated for periods of the
order of 100-500 years only (Stouffer et al., 1989; Cubasch et al., 1992; Delworth et al. 1993;
Manabe and Stouffer, 1993), which are too short for reliable estimates of the century time
scale natural variability. Although this will probably become the most reliable means of es-

timating natural climate variability once longer simulations are available, we have not used
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these data in our estimates of ocean variability.

As a compromise we have used the fourth, intermediate method: the estimate of the low-
frequency noise from long (= 1,000 years) stochastically-forced experiments with uncoupled
ocean (GCMs. These results yield adequate statistics for determining the variability on the
10-100 year time scales relevant for time-dependent greenhouse warming experiments with
fully coupled models, A shortcoming of such estimates of low-frequency noise, however, is
that it is not clear whether the low-frequency variance information derived from the ocean
model alone is & good approximation to the results that would have been obtained in a long
integration with a fully-coupled ocean-atmosphere model. Although the important dynamics
of the slow component of the climate system (the ocean) is correctly represented, and the
effective forcing by the atmosphere can be well simulated as white noise, ocean-only models
do mot include the potential feedback loops through the atmosphere. Another uncertainty
arises through the spatial structure of the stochastic forcing, espedally for the heat and net
fresh water fluxes, since reliable observed data sets with global coverage and information on
interannual variability do not exist. A big advantage, however, over paleoclimate records is
that data from stochastically-forced ocean GCMs are available for the entire global ocean,
both over long periods and at high temporal resolution.

In this study, we use estimates of the century time scale noise from two long stochastic
forcing experiments performed by Mikolajewicz and Maier-Reimer (1990, 1994; henceforth
MM30 and MMO94, respectively). The two integrations differ in terms of the applied forcing.
In the first experiment, the Hamburg Large-Scale Geostrophic (LSG) ocean GCM (Maier-
Reimer et al., 1993) was forced for 3,800 vears by temporally white but spatially correlated
anomalies of fresh water fluxes, superimposed on the prescribed climatological fresh water
fluxes. We refer to this experiment subsequently as S§F (“Stochastic Freshwater flux™ ). In the
second experiment, SALL (“Stochastic forcing in All components” ), the LSG ocean model
was forced for 8,000 years with white-noise variability in freshwater fluxes, heat fluxes and
wind stress.

We use the noise information from these integrations to determine the significance of
trends in ocean variables in several time-dependent greenhouse warming experiments re-
cently performed with the ECHAM-1/LSG coupled atmosphere-ocean model. The first ex-
periment (*"SCENA") starts with 1985 equivalent CO; concentrations, and the model is then
imtegrated for 100 years with the GHG forcing specified in Scenario A (“Business as Usual®)



of the Intergovernmental Panel on Climate Change (IPCC; Houghton et al., 1900). The sec-
ond, 150-vear experiment (‘EIN": Early [ndustrialization) begins in 1935, and uses observed
changes in equivalent CO; from 1935-1985 and Scenaric A forcing after 1985. The two in-
tegrations provide some insight into the magnitude of the “cold start™ error {Hasselmann et
al., 1993) and its impact on detection time estimates (the cold start error is estimated in
Hasselmann et al., 1993, but is not corrected in the SCENA run). We also consider a suite of
three 50-year Monte Carlo experiments, each with identical Scenario A forcing but starting
from different initial conditions. This allows us to investigate uncertainties in our estimate
of the signal which are related to imperfect knowledge of initial conditions. Details of these
coupled-model experiments are given in Cubasch et al. (1992; 1994ab). A pattern analysis
of the atmospheric response in the SCENA integration and two further greenhouse warming
experiments is presented in Santer et al. [1994).

The signal uncertainties illustrated by the SCENA, EIN and Monte Carlo experiments
show that there is a need for distinguishing between detection period and detection time.
We can determine the particular date at which we will be able to detect some climate change
signal only if we are confident that we have a reliable computation of the climate change
signal in absolute time (i.e., in calendar years). This we do not have, neither for the cold-
start-affected SCENA integration nor for the EIN integration, which does not have a true
pre-industrial start date. Furthermore, the lesson learned from the Monte Carlo experiments
is that it is not enough to know one particular initial state and carry out one simulation.
To define the statistical properties of the true time-evolving signal we need to carry out
an ensemble of long (= 100 years) runs for different initial conditions in order to identify
the model-generated internal variability which is superimposed on the climate change signal.
Such ensembles are not presently available. In the following, we stress that the term “signal”
is used to denote an estimate of the signal, with superimposed noise, rather than the true,
underlying signal process.

To factor out signal evolution uncertainties we therefore distinguish between detection
period and detection time. We define detection period as the length of the climate time
series which must be available in order to detect a given linear trend (growth rate #) in the
presence of the natural climate variability. Detection period is expressed in model years and
is independent of reference time and the real time evolution of the signal. It depends only on
B, the noise properties of the natural variability time series, and the stipulated significance
level,



Alternately, detection time is computed for an actual time-evolving signal from a green-
house warming experiment. The time evolution of the signal need not be linear and can have
any form. Thus it depends on both changes in the mean signal trend with time (which are
specific to the assumed radiative forcing scenario) and the noise properties of the natural
variability time series, and is a function of the start date of the experiment (and the magni-
tude of the cold start error, if this has not been corrected). We will express detection times
in model years relative to a reference time of 1985. This enables us to compare ocean signals
in the SCENA and EIN experiments on a common basis. We caution, however, against
interpreting ‘1985’ too literally as the true calendar date, which would place unwarranted

confidence in the precise details of the predicted signal evolution.

The present study should be viewed as an initial attempt to consider the time dimension
of the signal-to-noise problem in a coupled ocean-atmosphere GCM with time-dependent
GHG forcing. Previous investigations which addressed the time-dependent signal-to-noise
problem in a greenhouse warming context have used signal information from a simple energy-
balance model (Briffa et al., 1990) or from pseudo-transient experiments performed with an
ocean GCM (Mikolajewicz et al., 1993). The focus of our investigation is on methodological
aspects. We stress that there are (and will continue to be) model-dependent uncertainties
in defining an enhanced greenhouse effect signal, and in determining the magnitude and
spatial structure of the low frequency internally-generated natural variability. The approach
used here — to estimate the decadal- to century-time scale noise from an idealized ‘ocean
only’ natural variability experiment - must be regarded as a temporary solution pending
the availability of long (> 1,000 years) control integrations using either ocean models with

realistic linear atmospheric feedback or fully coupled atmosphere-ocean GCMs.

Although the final section of this paper makes some attempt to follow the philosophy of
Hasselmann (1979, 1993) in optimizing the signal-to-noise ratio, it does so only in a very
simplified form. The correspondences with Hasselmann’s strategy are threefold. First, we
have reduced the dimensionality of the multivariate problem. Instead of considering the
multivariate ocean signals and noise in the full grid-point/time space, we have reduced the
spatial dimension to the order of 20 by using only a few characteristic integral properties of
the ocean circulation. This enables us to obtain reliable estimates of the noise properties,
since the effective number of independent time samples in the three natural variability ex-
periments examined here is at least an order of magnitude larger than the reduced spatial

dimension. Second, we have employed the concept of a “guess”, or expected signal direction.
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The use of a guess focusses the search for a GIIG signal in an ‘intelligent’ direction - i.e.,
the direction in which the GHG signal is expected to lie. This generally leads to higher
signal-to-noise ratios than an approach which looks in a large number of directions simulta-
neously, many of which may contain more noise than signal. Third, we have optimized the
signal-to-noise ratio by a rotation in space. This has the effect of skewing the signal away
from the directions in which the noise level of natural variability is high and towards the
direction of low noise, thereby increasing the signal-to-noise ratio.

Implementation of the full optimal detection strategy outlined by Hasselmann (1993)
would involve optimization of the combined space-time structure of a four-dimensional mul-
tivariate signal vector relative to the noise. In the present study the optimization of signal-
to-noise is in space only. In other words, in attempting to detect linear trend signals, we
have not applied an optimized time filter which depresses frequency bands with a large rel-
ative noise contribution. The application of the full ‘optimal fingerprint’ strategy will be
considered in a future paper.

In practice, it will be difficult to obtain observations for many of the spatially-integrated
ocean circulation indices which we use here. It is unlikely that measurement technology
over the next several decades will significantly improve this situation. This is not a severe
constraint here, since our focus is on methodological azpects of the signal-to-noise problem.
We note also that the use of integrated quantities facilitates a multivariate analysis of the
model's ocean circulation, and offers a rather simple way of examining the covariant behavior

of different characteristic ocean variables and different ocean basins.

An important set of measurable integral properties of the ocean circulation are acoustic
travel times for various combinations of transmitting and receiving stations (Munk and
Forbes, 1989). Although we have not explicitly considered travel times in this paper, our
analysis should shed some light on the potential usefulness of these variables for detecting
anthropogenic climate change (c.f. Mikolajewicz et al., 1993).

This paper is organized as follows. Section 2 begins by introducing the integrated ocean
diagnostics we shall be using: the spatial averages (ocean-basin or global scale) of such
quantities as ice volume, heat and fresh water fluxes, rate of deep water formation, salinity,
temperature, and transport of mass. We then deseribe and compare salient features of the
oceanic variability in the uncoupled SF and SALL experiments.



Section 3 focusses on results from natural variability and greenhouse warming experi-
ments performed with the fully-coupled ECHAM-1/L5SG atmosphere-ocean model (Cubasch
et al., 1992). We first consider a 300-vear control simulation (henceforth referred to as CTL),
and compare its variability with the variability simulated in the uncoupled SF and SALL
experiments. We then discuss the coupled model's ocean response to the time-dependent
GHG forcing specified in the SCENA and EIN experiments. Section 3 concludes with an
analysis of the ocean response in three ‘Monte Carle’ experiments, each with identical GHG
forcing but starting from different initial conditions.

In Section 4 we compute detection periods and detection times for univariate data (indi-
vidual spatially-averaged ocean variables). This requires calculation of £, the standard error
of linear trends on time scales of 10-100 vears, i.e., the standard deviation of the sampling
distribution of linear trends in the presence of natural variability. We use ocean data from
the SF and SALL experiments in order to compute £, and show how differences in ocean vari-
ability and signal uncertainties translate into different estimates of signal detection period
and time.

Section 5 addresses the question of whether the use of a multivariate detection vector
increases the probability of early detection of an ocean greenhouse warming signal. We first
compute the Empirical Orthogonal Functions (EOFs) of the spatially-averaged, multivariate
ocean time series in the two stochastic forcing experiments, and then show how these modes
provide information about the covariance between different circulation indices at different
depths and spatial locations in the ocean. We next project the multivariate ocean greenhouse
warming signal and natural variability noise onto a common “guess pattern”, which defines
the expected signal direction. Signal-te-noise ratios are then computed for the resulting
principal component (PC) time series using the method outlined in Section 4. Finally, we
optimize the signal-to-noise ratio by rotating the multivariate ocean signal in the direction
of low noise components of the SF and SALL experiments. A brief summary and conclusions
are given in Section 6.



2 OGCM Stochastic Forcing Experiments

This section introduces the ocean diagnostics employed in the present study and the two
stochastically-forced ‘ocean-only’ experiments used to derive the level of noise associated
with natural variability in the models. Details and previous applications of the LSG OGCM
used in these experiments are given in Maier-Reimer et al. (1993).

2.1 Ocean Diagnostics

To reduce the spatial dimension of the signal-to-noise problem, we consider integral properties
which characterize the state of the ocean general circulation. For the computation of most
of these quantities the ocean is divided inte four horizontal boxes. The first box covers the
North Atlantic and the Arctic Ocean north of 30°N, the second the North Pacific north of
30°N, and the third the Southern Ocean scuth of 30°S. The last box covers the tropical
region of all oceans between 30°N and 30°S. Quantities integrated over these boxes are the
heat and fresh water fluxes between ocean and atmosphere (positive values indicating net
heat and fresh water flux gains by the ocean, corresponding to warming and freshening of
the surface, respectively), sea ice volume (only relevant in the North Atlantic and Southern
Ocean), and potential energy loss due to convection as an indicator of the formation rate of
North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW).

The thermohaline circulation is described by the net inflow/outflow at depths below
1.5 km between the Atlantic, Pacific and Indian Oceans, and the Southern Ocean at 30°5.
Positive values in the Pacific and Indian Oceans indicate a net northward inflow, whereas the
negative values of the Atlantic describe the outflow of NADW to the Southern Ocean. To
monitor changes in the depth of the cutflow, the same quantities are also computed for the
transport below 2.5 km. Another important quantity characterizing the thermohaline circu-
lation is the strength of the mass transport of the Antarctic Circumpolar Current {ACC).
The properties of the deep water masses of the ocean are described by the globally-averaged
potential temperature and salinity at the 4 km level of the model.

These 21 integral quantities capture both the main features of the large-scale variations
in the ocean circulation and of the thermohaline surface forcing. In this paper we present



only the annual mean values, bat all cxporiments described below were run with an annual
cvele.

A list of these integral quantities and their mean values for different natural variability
experiments is given in Table 1.

2.2 SF Stochastic Forcing Experiment

In this experiment, the Hamburg LSG OGCM was forced for 3,800 years by temporally
white (but spatially correlated) monthly anomalies of fresh water fluxes, superimposed on
prescribed climatological fresh water fluxes (see MM90). The amplitude of the fresh wa-
ter flux forcing was chosen as 16 mm/month, approximately 20% of the observed global,
annually-averaged precipitation. The other surface forcing fields were taken from clima-
tologies of monthly mean wind stress {Hellerman and Rosenstein, 1983) and monthly mean
surface air temperature (COADS; Woodruff et al., 1987), A Newtonian relaxation procedure
was used in order to couple the temperatures in the surface layer to the COADS tempera-
tures. Further details are given in MM30. The aim of the experiment was to examine the
low-frequency response of the LSG OGCM to white-noise forcing and test whether short-time
scale atmospheric variability could be the origin of natural climate variability, as proposed
by Hasselmann (1976).

The ocean model demonstrated complex variability on a wide range of space and time
scales. The response variance spectra of ocean circulation indices were typically red, with
power increasing towards low frequencies for time scales up to several centuries. In order
to study this variability, MM90 used both composites and a statistical technique known as
Principal Oscillation Pattern (POP) analysis ( Hasselmann, 1988; Storch et al., 1988). They
found that the dominant eigenmode of the ocean circulation had a characteristic time scale
of roughly 320 years. The signature of this mode was evident in the annual mean time
series of & number of different spatially-averaged ocean variables, such as mass transport
through the Drake Passage, globally-averaged deep-ocean temperature, and the formation
rate of AABW (see Figure 1), The signals were strongest in the Southern Ocean. The
eigenmode also affected circulation in the Pacific and Indian Oceans through interaction
with the Antarctic Circumpolar Current (see aleo Mikolajewicz and Maier-Reimer, 1991).
MM90 interpreted the time scale of this mode as being related to the OGCM's characteristic
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flushing time for the Atlantic (ca. 400 years). A subsequent study of the variability in the SF
experiment by Weisse et al. (1993) revealed also the existence of a North Atlantic circulation

mode with a characteristic time scale of 10-40 years.

To investigate the sensitivity of the ocean response to the amplitude of the forcing,
Mikolajewicz and Maier-Reimer (1991) performed two further experiments in which they
increased and decreased the amplitude of the forcing anomaly by a factor of three {from
16 mm/month to 48 and 5 mm/month, respectively). In the experiment with increased forc-
ing amplitude, the ocean circulation rapidly switched into a new stable state characterized
by permanent suppression of NADW formation. A reduction of the amplitude reduced the
response significantly more than by the linear reduction factor of three and effectively elimi-
nated the complex variability found in the original SF experiment, The 320-year eigenmode
disappeared completely. This suggested the existence of some threshold value necessary for
the excitation of the eigenmode. A recent suite of experiments by Barnett et al. (1993) at-
tempted to identify this threshold by varying the amplitude and space-time coherence of the
fresh water flux forcing. They found that triggering of the 320-year MM90 mode was highly
sensitive to the amplitude of the forcing, but not to its spatial coherence, and that monthly
anomalies of 30 mm/month were required to initiate the mode if no spatial correlation of
the noise forcing was applied. These experiments also demonstrated that the period of the
MMS0 320-vear mode was rather sensitive to the inclusion of a sea ice model.

2.3 SALL Stochastic Forcing Experiment

The original SF experiment was designed to lock at the natural variability of the thermoha-
line circulation. Since preliminary experiments indicated that this was governed primarily
by variations in the fresh water flux, variations in the heat flux and wind stress were omitted
to establish a clear cause and effect relationship. Recently, MM94 investigated the impact
of these other foreings by performing a similar but longer 8 000-year stochastic forcing ex-
periment (SALL) in which the forcing consisted of uncorrelated monthly mean anomalies of
all surface flux terms: momentum (wind stress), heat and fresh water.

The forcing fields were taken from an experiment performed with the (T42 resolution)
ECHAM-3 atmospheric GCM (AGCM), in which the atmospheric model was driven by the
observed record of changes in sea-surface temperature (SST) and sea-ice distribution over
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the period 1979-88. The integration was part of the Atmospheric Model Intercomparison
Project {AMIP), an intercomparison of over 30 AGCMs driven by a standard set of observed
boundary conditions ((Gates, 1992).

The forcing in the SALL integration was constructed by random selection of individual
months from the 10-year AMIP experiment. Thus, for each January of the SALL integration
one of the ten different AMIP Januaries was selected at random; a similar procedure was used
for all other months. The anomalies of wind stress, fresh water fluxes and heat fluxes for the
selected month of the AMIP experiment were then added to their respective climatologies
and used as forcing for the OGCM (further experiments which included some eorrelation
between successive months yielded essentially the same results).

An additional important difference between the two stochastically-forced OGCM simu-
lations was the treatment of the upper boundary condition for temperature. The 5F exper-
iment was run with relaxation of the model S5T to cbserved near-surface air temperatures.
Thus 55T anomalies were damped out rather quickly with a time constant of 2 months
(corresponding to a damping coefficient of 40 Wm™*C "), whereas surface salinity anoma-
lies tended to have a much longer lifetime and no direct damping due to the prescription
of climatological monthly mean fresh water fluxes. This type of mixed boundary condition
qualitatively reproduces the nature of the air-sea interaction (damping of 55T anomalies due
to anomalous heat fluxes, whereas fresh water fluxes are independent of the surface salin-
ity} and has been frequently used in recent experiments (e.g. Bryan, 1986; MM90; Weaver
and Sarachik, 1991). However, simulations with this type of boundary condition generally
anderestimate S8T variability. Recently, MM94 showed that a boundary condition for tem-
perature consisting of prescribed climatological heat Auxes and subsequent weak damping of
the model's SST gave a more realistic behavior of the uncoupled OGCM for climate simu-
lations. In the SALL experiment this type of boundary condition was used with a damping
time constant of 5 months.

The ocean variability simulated in the SF and SALL experiments shows considerable
differences. Results for selected ocean circulation indices in the SALL experiment are given
in Figure 2. In general, the SALL response is higher than the SF response in the 1-10 year
time scale range, since variations on this time scale (e.g. ENS0) are known to be governed
mainly by wind stress fluctuations, which were not included in the SF simulation. The
variability in the 1-10 vear range tends to be underestimated in both experiments, however,
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since the LSG model is designed for the study of longer term variability. In particular, it uses
an implicit integration which damps out fast travelling waves — such as equatorial Kelvin
waves — which play an important role in EN50O development.

We are more interested here in the longer-term variability. It is surprising that the
SALL simulation, although driven by all three flux anomaly fields, generally exhibits a
smaller response for longer periods. Thus the amplitude of the long-period variability in
such circulation indices as mass transport through the Drake Passape and globally-averaged
deep-ocean temperature is much smaller than in the SF experiment (cf. Figures 1 and 2)
and their period is considerably longer than 300 years. In general, the SALL experiment
exhibits a significantly lower level of ocean variability on the century time scale than the SF
experiment, with the exception of oeean variables in the North Atlantic (ice volume, strength
of NADW formation, and heat fluxes; see Table 1).

Clearly, even if the space-time evolution of an ccean greenhouse warming signal were
perfectly known, the differences in the century time scale oceanic variability simulated in
the two stochastic forcing experiments imply large uncertainties in estimates of the time
period needed to detect such a signal.

Unfortunately, it is somewhat difficult to identify the source of the differences in ocean
variability between the SF and SALL experiments, since these may be due to the differences
in the boundary conditions for surface temperature and the associated difference in mean
state, the amplitude and structure of the forcing patterns, and the fact that the stochasticity
in the SALL experiment applies to &ll forcing terms, rather than to fresh water fluxes alone.
However, the most likely cause for the reduced low-frequency response of the SALL exper-
iment appears to be the weaker Newtonian coupling to the prescribed surface temperature,
which increases the stability of the thermohaline dirculation.

It should be noted that not only the variability but also the mean states of ocean variables
(e.g. deep-ocean temperature, ice volume in the North Atlantic and Antarctic, and heat
Auxes in the Antarctic) are different in the SF and SALL experiments {Table 1). Ice volume
in the North Atlantic ia much lower in the SALL experiment, while the reverse is true for
ice volume in the Antarctic. The SALL integration also shows a more vigorous meridional
circulation in the Pacific, larger heat fluxes from the atmosphere into the tropical ocean, and
a 0.5°C warmer globally-averaged deep-ocean temperature.
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3 A/OGCM Signal and Noise Experiments

This section provides a brief summary of the experiments with the couﬁled A/OGCM
(ECHAM-1/LSG) which are used in our signal-to-noise analysis of ocean data. Details
are given in Cubasch et al. (1992; 1994a,b), who also provide information relating to model

validation and previous model applications.

3.1 Coupled Control Run

Both the SF and SALL experiments are idealized to the extent that they exclude atmospheric
feedback loops, which can act to attenuate or amplify ocean circulation modes identified in
the stochastic forcing experiments (see MM90). Such feedbacks are automatically included in
the 300-year CTL experiment performed with the fully—éoupled ECHAM-1/LSG A/OGCM,
an extension of the original 100-year control run performed by Cubasch et al. (1992). The
atmospheric CO; concentration in this experiment was fixed at the level observed in 1985. To
avoid climate drift of the coupled system, a flux correction scheme was employed (Sausen et
al., 1988). The surface fluxes from the atmosphere into the ocean (heat, net fresh water flux,
and wind stress) and the ocean surface data which affect the atmosphere (SST) were corrected
both spatially and over the seasonal cycle. The correction terms can be regarded as constant
anomaly fields which are added to the computed fluxes, enabling the atmosphere and ocean
to receive the fluxes that they need in order to maintain a stable reference climate. For small
perturbations which can be linearized, the constant flux corrections have no influence on the
model response characteristics. The procedure does not completely eliminate climate drift,

but reduces it substantially.

The variability of 2m temperature in the first 100 years of the coupled control run has
been described by Cubasch et al. (1992) and by Santer et al. (1994). The latter investigation
showed that while certain features of the variability in the control run could be interpreted
as natural variability of the coupled model, other aspects of the variability were more con-
sistent with residual climate drift caused by incomplete compensation in the flux correction

procedure.

Results for selected ocean diagnostics from the CTL experiment are presented in Figure

13



3. The variables differ significantly in their temporal behavior. Surface quantities such as
atmosphere-ocean heat exchange in the North Atlantic are relatively stationary, whereas
Arctic ice volume and convection in the Southern Ocean show an initial drift. In the case of
Southern Ocean convection, ethbratlon requires approximately 20 years. The equlhbratlon
time for Arctic ice volume is much longer, with ice volume increasing from an initial value
of roughly 10 x 10° km® to an asymptotic value of ca. 40 x 103 km?® after 100 years. The
globally-averaged temperature and salinity at 4 km depth showed an almost linear increase

throughout the integration.

It is difficult to determine unambiguously whether the non-stationarity of ice volume
and deep-ocean temperature and salinity represents bona fide natural variability of the fully-
coupled system or residual climate drift. The behavior of Arctic ice volume favors a drift
interpretation, with slow equilibration over the first 80-100 years of the CTL experiment. |
‘This may be due to the fact that the flux correction procedure is conceptually not fully
consistent with the non-linear behavior of the system at the ice edge (Cubasch et al., 1994a).
The fact that incomplete flux compensation at the ice edge may also affect the properties
of the newly-formed deep and intermediate water provides one possible explanation for the
almost linear increase in global mean deep ocean temperature and salinity. We note, however,
that the variability of deep-ocean temperature and salinity is not inconsistent with the
amplitude of their fluctuations in the SI' experiment (see Table 1), so that this behavior

could also be due to natural variability rather than drift.

As in the SF-SALL intercomparison, the mean states in the SF and CTL experiments are
very different for most ocean diagnostics (Table 1). The globally-averaged temperature at
4 km depth is approximately 0.6°C warmer in the CTL experiment than in the SF integration.
There is a tendency towards a more vigorous meridional circulation in the Atlantic, Pacific
and Indian Oceans in the coupled model control run, with associated increases in heat transfer
from the ocean to the atmosphere in the North Atlantic, North Pacific and Antarctic, and a

stronger heat transfer into the ocean in the tropics.

3.2 Scenario A Experiment

The ECHAM-1/LSG coupled atmosphere-ocean model has also been used to perform a num-
ber of greenhouse warming experiments. In the SCENA integration (Cubasch et al., 1992),
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the coupled model was forced by the time-dependent increases in equivalent atmospheric
CO; concentration specified in the [IPCC Scenario A (Houghton et al., 1990), which assumes
unrestricted future emissions of greenhouse gases. The model was integrated for 100 years,
corresponding to an increase of the equivalent atmospheric CO; concentration by a factor of
three relative to the initial concentration in 1985,

The SCENA results for selecled ocean diagnostics are shown in Figure 3, together with the
previously-discussed results from the 300-year CTL experiment. Some indices show clearly-
evolving signals relative to quasi-stationary behavior of the CTL experiment. Examples
include the decreased strength of NADW and AABW formation rates and the consequent
decrease in heat fluxes from the ocean to the atmosphere in the North Atlantic and Antarctic
due to the suppression of upward convective heat flux (see Mikolajewicz and Maier-Reimer,
1991). For other ocean diagnostics, such as deep-ocean temperature, the behavior of the
coupled control run is non-stationary and the precise definition of the signal is more prob-

lematie.

As discussed in Cubaseh et al. (1992) and Santer et al. (1994), the signal definition
depends on assumptions regarding the correlation between the variability in the control run
and the greenhouse warming experiment. If one assumes that the variability in the control
run and response experiment are uncorrelated, it is appropriate to define the climate change
signal by subtracting the initial state of the control experiment (Definition 1). Alternately,
one may assume that the control run changes represent a spurious residual drift or a long term
component of natural variability common to both experiments. In this case it is appropriate
to subtract this common component and define the climate change signal as the instantaneous
difference between the response experiment and control (Definition 2).

Figure 4 shows selected SCENA ocean signals according to the two definitions. The
signals for indices which exhibit quasi-stationary behavior in the CTL experiment, such as
NADW and AABW formation rates and heat fluxes in the North Atlantic and Antarctic,
are relatively independent of the choice of definition. In contrast, the signals for variables
showing non-stationary behavior in the coupled control experiment are highly dependent on
the way the signal is defined. For example, in both hemispheres the ice volume shows a large

signal for one definition and zero signal for the other!

In view of the slow equilibration of Arctic ice volume in the CTL experiment [Section
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3.1), we regard Definition 2 as more appropriate for this quantity. The CTL and SCENA
similarities in the time evolution of the globally-averaged deep-ocean temperature (Figure 3)
and salinity (not shown) suggest that Definition 2 might also be preferable for these ocean
circulation indices. Since most other ocean variables are relatively insensitive to the choice
of definition, we will use Definition 2 except where explicitly stated.

3.3 Early Industrialization Experiment

The SCENA integration, with a start date in 1985, ignores the pre-1985 history of GHG
forcing, and assumes that the atmosphere and ocean are initially at equilibrium with respect
to 1985 equivalent CO; concentrations. In the real world, pre-1985 GHG forcing may have
lead to sequestering of heat in the intermediate and deep ocean (Watts and Morantine,
1991; Kellogg, 1993). This previous warming is ignored in experiments with present-day
start dates, leading to a retardation in global mean temperature increase (the so-called
“cold start” error; Cubasch et al., 1992; Hasselmann et al., 1993).

To investigate this error, Cubasch et al. (1994b) recently repeated the SCENA experi-
ment with a starting date in 1935 instead of 1985. This experiment (EIN) uses the observed
GHG increases from 1935 to 1985, and GHG increases identical to those used in SCENA
from 1985 to 2085. The experiment confirmed the linear cold start corrections of Hasselmann
et al. (1903}, The earlier starting date of the EIN experiment reduces the impact of the cold
start error but does not remove it completely.

In Sections 4 and 5, we use data from the SCENA and EIN integrations to investigate the
impact of the cold start error on detection time estimates for ocean signals. A qualitative
comparison of the signals in the two experiments is shown in Figure 5. To compare the
experiments on a common basis, the signal anomalies were defined relative to the average
over the decade 1985-1994 of the respective experiment (i.e., vears 1-10 of SCENA and 51-60
of EIN). For certain indices, such as deep-ocean temperature and strength of the ACC, the
signal trends are clearly larger in the EIN experiment. The earlier starting date and longer
forcing period has little apparent impact on other quantities, such as the NADW formation
rate and ocean-atmosphere heat fluxes in the North Atlantic, which show very similar signal
evolution in the two experiments. We cannot evaluate whether such SCENA versus EIN
similarities and differences in the signal evolution are robust without performing further
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integrations to investigate the sensitivity of these results to initial condition uncertainties,

as will be shown in the following section.

3.4 Monte Carlo Experiments

In order to investigate the statistical properties of a time-dependent greenhouse warming
signal, Cubasch et al. (1994a) recently performed an ensemble of three 50-year “Monte Carlo’
experiments with the ECHAM-1/LSG eoupled atmosphere-ocean model. These integrations
used identical greenhouse-gas forcing (the equivalent CO; increase from 1985-2034 specified
in the IPCC Scenario A), but each started from different initial conditions of the Cubasch
et al. (1992) CTL experiment — i.e., at years 30, 60 and 90. The Cubasch et al. (1994a)
study focussed on atmospheric signals, and showed that individual realizations exhibited
substantial differences in the space-time structure of the 2m temperature signal. Here we
consider the statistical properties of the ocean signals in these experiments.

Figure i compares the changes in globally-averaged temperature at 4 km depth (up-
per panel) and NADW formation rate (lower panel) for the three Monte Carlo integrations
(MC30, MCB0 and MC30) and the SCENA integration. Deep-ocean temperature is an inte-
gral quantity which shows relatively small interannual variability, while the rate of NADW
iz strongly influenced by surface conditions and has much larger year-to-year variability.
At the end of the SCENA integration, both variables exhibit clear signals. In the first 3-
4 decades, however, the between-realization variability is as large as the ensemble-average
signal (MCMEAN) after 40 years. The implication is that, on these timescales, imperfect
knowledge of initial conditions can translate into large uncertainties which make it difficult
to define the signal unambiguously.

4 TUnivariate Estimates of Detection Period and De-

tection Time

In the previous section, we provided some preliminary comparison of the ocean variability in
the 5F, SALL and CTL experiments. In the following section we extend this comparison to
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~ the power spectra of selected ocean diagnostics, and show how these differences in variability
translate into different estimates of the standard error of a linear trend. Finally, we use
univariate ocean data to estimate signal detection periods and times, and show how both

are affected by signal and noise uncertainties.

4.1 Spectra of Ocean Circulation Indices from SF, SALL and
CTL Experiments

The power spectra for various ocean circulation indices from the SF, SALL and CTL ex-
periments are shown in Figures 7a-c. For the SF and SALL experiments, spectra were
chunk-averaged using non-overlapping chunks of 1,000 years in length (corresponding to six
and 16 real degrees of freedom, respectively). For the CTL integration three non-overlapping
chunks of length 100 years were used (six degrees of freedom). Spectra were not normalized

by their respective standard deviations.

Consider first the spectra for fresh water fluxes integrated over the entire North At-
lantic and Arctic Ocean, which is representative of one of the forcing terms in the SF and
SALL experiments (Figure 7a). In all three cases the spectra are almost white. For the
stochastically-forced OGCM experiments this is simply a reflection of the assumed lack of
temporal correlation in the forcing. The coupled CTL experiment suggests that this is a

valid assumption, at least in the North Atlantic.

Figure 7b shows spectra for one of the SF response variables, the atmosphere-ocean
heat exchangé in the North Atlantic (in the SALL experiment, these fluxes are a mixed
forcing/response term). This has a clear red response spectrum with a maximum at a period
of ca. 320 years (Figure 7b). The corresponding spectra of the SALL experiment and the
CTL simulation are white for time scales below 30 years, with some suggestibn of reddening
on time scales of 30-100 years. In the SALL experiment the atmosphere-ocean heat fluxes are
a mixed forcing/response term. From the formulation of the boundary condition, the total
heat flux consists of a prescribed component and a diagnostic term obtained from restoring
SST to its climatological values. Because fluctuations of the prescribed forcing are white,
the reddish component must therefore originate from changes in ocean circulation and the

subsequent changes in the advection of heat.
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A different picture emerges from the spectra of the mass transport of the ACC (Figure
Tc). All spectra are red. The SF experiment has a discrete peak at ca. 320 years, which
represents the signature of the salinity oscillator identified by MM90. The SALL spectrum
has a peak at ca. 500 years, while the CTL integration is too short to identify any century-

time scale variance maxima.

In general, all ocean response terms involving deeper layers in the SF and SALL exper-
iments show a monotonic increase in power as the period increases from 4 years to several
hundred years, with discrete peaks at approximately 320 yearé and 500 years, respectively.
The noise on time scales less than 10-50 years is much larger in the SALL experiment than
in the SF integration. The SF experiment in turn shows much greater variability on century

time scales.

The ocean spectra from the CTL experiment are generally more similar to the SALL
spectra than the SF spectra in the frequency range where the three integrations overlap.
Some of the CTL spectra are red (see, e.g., Figure 7c), but as noted in Section 3.1, it is
conceivable that part of this redness may be attributable to residual drift.

4.2 Standard Error Estimates

In order to determine whether the linear trend in an ocean greenhouse warming signal (5)
is statistically significant, we need to have information on ¢, the standard deviation of the
sampling distribution of the parameter which describes the linear trend. The standard error
can be computed in either the time domain or the frequency domain (Bloomfield and Nychka,

1992). Here we compute ¢ in the time domain.

Consider a time series y(t),t = 1,...,n from the SF or SALL experiment, where y(t)
is an integrated quantity such as deep-ocean temperature (because of the short integration
length we do not use the CTL experiment to estimate €). For a given chunk length L, we
use least-squa_rés regression to fit linear trends to each of m non-overlapping chunks of this
time series (Figure 8). For the SF experiment, for example, L = 100 and m = n/L = 38.
The least-squares trend for each chunk has a slope parameter B(c) ,e = 1,...,m and the

standard error of the linear trend is then
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In the following we show £ as a function of chunk length L, with [ varying from
10,20,...,100 years. Since the sample size m is small if L is large (> 100) and chunks
are non-overlapping, we increased the sample size by using chunks which overlap by 1 year,
so that m = 3,701 for L = 100. The standard errors for non-overlapping and overlapping
chunks are very similar (Figure 9), The use of overlapping chunks provides little additional
information, but gives a much smoother picture of the decrease in £ with increasing chunk
length. All subsequent standard error results, thereflore, are based on overlapping chunks.

Figure 10 shows examples of the standard errore in the SF and SALL experiments, While
both integrations present the same qualitative picture of a decrease in £ with increasing
chunk length, the decay is generally more rapid for the SALL experiment. Quantitatively,
the standard errors in the two experiments can differ in either direction by up to an order of
magnitude, The difference is most pronounced for variables such as deep-ocean temperature,
streamfunction in the Atlantic, and heat fluxes and ice volume in the Antarctic, for which
standard errors are larger in the SF experiment. These results are consistent with the spectra
of the SF and SALL ocean time series {Section 4.1) and the generally higher variability of
the ocean circulation in the SF experiment on time scales longer than ca. 10-30 years.

On shorter time scales, the standard errors in the SALL experiment are sometimes larger
than those in the SF integration. This is seen most clearly in the atmosphere-ocean heat
fluxes integrated over tropical oceans, which is a mixed forcing/response term in the SALL

experiment.

The values of £ constitute the background noise level due to natural variability against

which we must detect any ocean greenhouse warming signal. The large disparities between
the SF and SALL standard errors translate into large uncertainties in estimates of the de-
tection periods and detection times for ocean signals, as discussed in the following sections.



4.3 Univariate Detection Period Estimates

In order to estimate detection periods we first compute the SF and SALL standard errors ¢;
as in (1), but now for chunk lengths L; =i x 10,7 = 1,2,... ,10. We then require a signal
growth rate B for each ocean variable. This strongly depends on the ocean variable. An
increase of 1% /year is typical for some surface indices, while deep-ocean variables change
much more slowly.. We therefore choose B as the mean growth rate which yields the increase
‘or decrease in a given ocean variable (according to our preferred Definition 2) in the final
decade of the SCENA experiment. We consider also growth rates 8 x 0.5 and B x 2 to reflect

the large uncertainty range in linear signal evolution estimates.

The ratio B/¢; is a measure of the signal strength relative to the natural variability
noise. Assuming that the sampling distributions of linear trend parameters are normally
distributed in both the SF and SALL experiments, we define the detection period T}, as
the chunk length L; for which the dimensionless quantity B/e; exceeds 1.96 — the critical
normal-curve value appropriate for a stipulated signiﬁcance level of 5% and a two-tailed test
(we perform two-tailed tests since for many ocean variables, such as mass transport through
the Drake Passage, we have no a priori information on the direction of signal trends - i.e.,
we do not know whether they are likcly to be positive or negafive). In other words, the
detection period is the chunk length for which the linear signal trend is nearly twice as large
as the standard deviation of the sampling distribution of slope parameters for that chunk

length.

Detection periods are highly sensitive to the natural variability noise differences in the
SF and SALL experiments (Table 2). For the SF noise, less than one-third (19 of 63) of
the assumed growth rates were detectable within 100 years, while over two-thirds (45 of 63)
of the growth rates could be dctected in the 10-100 year time frame relative to the SALL
noise. These results are governed by the absolute differences in the standard errors (see
Figure 10) and levels of ocean variability in the two stochastic integrations. Given the larger
standard errors in the SF experiment, T, is generally longer if noise is estimated from this
integration. Exceptions are North Atlantic ice volume and NADW formation rate, where

the SALL experiment has greater variability on time scales of 10-30 years.

Certain aspects of our results appear to be independent of the SF versus SALL standard

error differences. First, indices which are highly sensitive to surface conditions, such as ice
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volame in the North Atlantic, ocean-atmosphere heat fluxes, and NADW formation rate,
tend to have shorter detection periods than changes in deep ocean temperature and salinity.
Second, changes in mass transport in the Pacific and Indian Oceans have shorter detection
periods than changes in transports from the Atlantic to the Southern Ocean, Third, detection
periods can be long for the growth rates stipulated for fresh water flux terms, despite the
fact that these quantities are white-noise forcing terms in the SF and SALL experiments.
This means that the changes in these indices at the end of SCENA (and hence the assumed
growth rates) are relatively small.

The short detection periods for growth rates of North Atlantic ice volume (10-23 Vears)
require some comment. This result is probably due to the prescription of atmospheric tem-
perature, which is highly constrained in the SF experiment, but less constrained in the SALL
integration. This acts to suppress any variability directly associated with surface temper-
ature. Of the ocean variables ccnsidered here, this will be manifested most clearly in the
variability of sea ice. The detection periods and times for ice volume changes are, therefore,
likely to be too optimistic.

4.4 Univariate Detection Time Estimates

To compute detection time, we use the same SF and SALL standard errors, £, employed
in the calculation of detection period. lnstead of assuming linear signal growth rates, we
now use the real time-evolving signals in the SCENA and EIN experiments. The signals
are described by the linear trend parameters 8 , with ¢ = 1,2,...,10 and are computed
for intervals L; = 1 x 10 (i.e., for years 1-10, 1-20, ... ,1-100 of a given signal time series ).
Unlike B/«;, the ratio /c; now involves changes in both signal strength and noise levels as
a function of increasing length of Lthe time series.

In order to compare the SCENA and EIN experiments on a common basis, we computed
the signal anomalies relative to the average over the decade 1985-19%4 of the respective
experiments (see Figure 5). Assuming Gaussian distributions for the linear trend parameters
in the SF and SALL experiments, we define detection time T as the interval length L; for
which 5i/e; exceeds and remains above 1.96 (i.e., 5% significance for a two-tailed test).
The qualification “remains above™ is necessary since the signal trends are not constant with
time (see Figure 5), so that §;/e; may exceed 1.96 for a given interval but drop below this
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threshold for a longer interval. Because of the previously-discussed problems associated with
ice volume changes and the white-noise nature of the SF and SALL fresh water flux terms,

we have not computed detection times for these indices.

The detection times for the univariate SCENA and EIN signals show a behavior similar
to the detection periods (Table 3). The SCENA and EIN signal trends could be detected
within 100 years in only 7 of 45 cases for the SF noise, while the detection success, 31 out

of 45 cases, was much higher for the SALL noise.

The effect of the cold start error on detection time is also evident. For most indices,
the EIN signals are detectable earlier than the SCENA signals. The largest improvements
in detection time are for mass transport through the Drake Passage (70 years earlier) and
transports in the Pacific and Indian Oceans (35-40 years earlier; see Table 3 and Figure 5).

Table 3 also shows that the estimates of detection time T; depend on the assumptions
about the correlation between the SCENA and CTL variability, i.e., on the choice of Def-
initions 1 or 2 of the SCENA signal. This is not surprising in view of some of the results

shown in Figure 4.

Note that heat fluxes integrated over tropical oceans yield a very optimistic detection
time under Definition 1 of the SCENA signal relative to the SALL standard errors (10
years; see Table 3). This is largely due to the strong drift in this quantity during the initial
decade of the CTL integration (not shown). If the first 10 years of the CTL and SCENA
experiment are excluded, the detection time for changes in tropical ocean-atmosphere heat

fluxes increases from 10 to 40 years.

As noted in Section 3.4, a further source of signal uncertainty is related to our imperfect
knowledge of initial conditions. Figures 1la,b illustrate this by showing f;/¢; relative to
the SF standard errors for all signals (SCENA, the individual Monte Carlo experiments and
the MCMEAN) and S;/e; for the SALL standard errors and the SCENA signal only (to
avoid complicating the diagrams, f;/e; results for the Monte Carlo signals relative to the
SALL standard errors are not shown). Consider results for NADW formation rate (Figure
11a). The SCENA signal for this quantity is detectable within 35 years, whereas the signals
in the MC60, MC90 and MCMEAN experiments are not detectable within 50 years. This -
shows that the conclusion which Cubasch et al. (1994a) obtained for atmospheric variables
is equally valid in an oceanic context — a single greenhouse warming integration of limited
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duration cannot provide insights into the statistical properties of the signal, and may vield a
misleading estimate of detection time. The Monte Carlo experiments indicate that the large
local maxima and minima in §;/e; for individual signals are not deterministic and tend to
be smoothed out in the MCMEAN signal (see, e.g., results for deep-ocean temperature and
strength of AABW formation, Figure 11b).

In summary, our results show that detection periods and detection times for univariate
ocean greenhouse warming signals are highly sensitive to details of the decadal-to-century
time scale noise, which is in turn sensitive to the precise specification of the atmospheric
forcing. Detection time estimates are also sensitive to signal uncertainties resulting from the
cold start error, imperfect knowledge of initial conditions (and the possibly chaotic nature
of the climate system), and assumptions regarding the relation between natural variability
in the control and response experiments, which affect the definition of the signal. The

implications of these results are discussed further in Section 6.

5 DMultivariate Estimates of Detection Period and De-

tection Time

In the preceding section, we examined the greenhouse warming signals and associated detec-
tion periods and times for individual, spatially-averaged ocean variables. We now consider
whether we can achieve earlier detection of an ocean greenhouse warming signal by consider-
ing a multivariate detection vector, rather than individual ocean variables only. This is the
essence of the “fingerprint” approach to signal detection (Madden and Ramanathan, 1980:
MacCracken and Moses, 1982; Barnett and Schlesinger, 1987; Wigley and Barnett, 1990;
Hasselmann, 1993,

5.1 Multivariate EOF Analysis

Consider as an example the normalized anomalies 5(x,t) from the 3,800-vear SF stochastic
forcing experiment



&(z,t) = [2(2,t) = Z(2)] /s(z) , z=1,p;t=1,n (2)

where Z(z) is the 3,00-year time average and s(x) is the standard deviation of the time
series. The discrete variable ¢ denotes time in years while z identifies the individual spatially-
averaged ocean variables in Table 1, excluding ice volume (because of the previously-discussed
drift problems) and the white-noise forcing terms, so that p = 15 and n = 3,800. The z
index therefore denotes both different variables as well as different spatial averages for the
same variable (e.g., ocean-atmosphere heat fluxes in the North Atlantic and Antarctic). Note

that normalization is necessary, since the dimensions differ between variables.

The covariance matrix c(z, y) is then defined as

n : » ) )

c(z,9) = (n=1)7" 3 2(z,8)2(y,8) , z,y=1,p 3)
=1 :

and represents the covariance between different ocean variables and different regions of the

ocean, at very large spatial scales. Since n is much larger than p, the sample covariance ma-

trix is a reasonable estimate of the population covariance matrix. The eigenvectors (EOFs)

are defined by

4

Ec(z’y)ej(y) = ljej(x) , ¢=1,p ‘ (4)

y=1
and are normalized to form an orthonormal basis, so that.

S ei@)ei®) = by 2 Ty=1p )

=1

The principal components (PC) amplitudes a;(t) are defined by

ai(t) = 3 2@ 0e(@) , i=1,p; =1 ©

=1
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Most meteorological applications use the so-called “S-Mode” of EOF analysis (Preisendor-
fer, 1988), in which the first index of the input data set z is assumed to be spatial location,
and the second index runs over time. In this context, EOFs are spatial patterns and the PC
amplitudes are time series that determine the relative importance of a particular pattern in
a given year. In the mode of analysis used here, the EOFs carry some spatial information
(at the scale of entire ocean basins), but also convey information about the relationships

between different ocean variables.

5.2 Multivariate EOF and PC Analysis: Results

SF Ezxperiment

Figure 12 shows EOFs 1-4 for 15 of the ocean time series from the SF stochastic forc-
ing experiment. Consider first EOF 1. It has high positive or negative values for virtually
all ocean variables, indicating that this mode is near-global in scale. The mode describes
the anticorrelation between atmosphere-ocean heat fluxes and the strength of deep-water
formation — increased NADW formation is linked with increased (i.e., larger negative) heat
fluxes from the North Atlantic to the atmosphere (rcEN-NA:HFL-NA = —0.66 for the nor-
malized CEN-NA and HFL-NA time series). The reverse situation applies in the Antarctic,
with reduced formation of AABW resulting in reduced (i.e. smaller negative; see Figure 1)
heat fluxes from the Southern Ocean to the atmosphere due to the suppression of upward
convective heat flux (rcgn-aamFL-aa = —0.95). The out-of-phase relationship between the
strength of NADW and AABW formation was a prominent feature of the 320-year ocean
circulation mode found in MM90. Our results suggest that EOF 1 is closelj linked to this
mode. The PC 1 time series, which gives the temporal variation of the amplitude of the
EOF 1 pattern, lends support to this hypothesis (see Figure 13a). It shows oscillations on

time scales of several centuries, with maximum power at a period of roughly 320 years.

Other features of EOF 1 are also consistent with properties of the dominant MM90 mode,
such as the strong correlation between mass transport through the Drake Passage and the
AABW formation rate (TpstA:CEN_AAr = 0.79; see Mikolajewicz and Maier-Reimer, 1991),
and the anticorrelation between the strength of NADW formation and outflow from the
Atlantic (rocgn-Na:ME1s-a = —0.58; see Figure 1). When NADW formation is increased,
the outflow from the Atlantic at 30°S is also increased, as indicated by the positive loading
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on NADW formation rate and the negative loading on streamfunction at 1.5 and 2.5 km
depth in the Atlantic {(since negative values denote flow to the south in the sign convention
used for streamfunction). EQF 1 also suggests that decreased mass transport through the
[irake Passage is linked with decreased northward transport of mass in the Pacific and Indian

Oceans (rpsmrameis-p = 0.73 and rpsmpames-1 = 0.88).

EOF 2 (Figure 12a) shows several features which are the inverse of EOF 1. It describes
reduced NADW formation, with consequent reduction of outflow from the Atlantic (i.e.,
smaller negative values for streamfunction at 1.5 and 2.5 km depth in the Atlantic), increased
AABW formation (with attendant increases in net heat flux from the Southern Ocean to
the atmosphere, i.e., larger net heat flux values; see Figure 1), and increased mass transport
through the Drake Passage. However, EOF 2 differs in other respects from the mirrored
EOF 1 (otherwise it would not be a separate EOF), and in particular shows no anticorrelation
between heat fluxes and convection in the North Atlantic, and an out of phase relationship
between AABW formation rate and deep inflow into the Pacific.

EOFs 1 and 2 describe an oscillating pair of modes, as is evident from their corresponding
PC time series (Figure 13a). This system is very similar to the oscillator identified by
Mikolajewicz and Maier-Reimer (1991; their Figure 7) in their POP analysis of vertical
salinity profiles in the Atlantic. The present representation provides more information about
the interrelationships between different integral ocean variables, while sacrificing spatial
details.

EOF 3 (Figure 12b) principally deseribes simultanecus increases in NADW and AABW
formation, with attendant increases in heat fluxes from the Southern Ocean and North
Atlantic to the atmosphere (i.e., larger negative values). This mode has a weak indication
of & spectral peak at a period slightly larger than 1,000 years (results not shown). The long-
periodic part of the corresponding PC time series {Figure 13b) shows some relation to the
time series of POP coefficient amplitude shown by Mikolajewicz and Maier-Reimer (1991),
and may be related to “on™ and “off” modes of the salinity oscillator. EOF 4 is a mode
in which there are anticorrelations between convective activity in the North Atlantic and
Antarctic, and between meridional transport in the Pacific and Indian Oceans. Like EOF 3,

there is some evidence of power on the 1,000-year time scale.

In summary, we conclude that EQFs 1 and 2 capture basic features of the “salinity
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oscillator™ identified by MMB90, and that some long time scale variations of EOFs 3 and 4
may be related to the “on” and “off” modes of this oscillator.

SALL Erperiment

In order to compare the dominant modes of ocean variability in the two stochastic forcing
experiments, we also computed the multivariate EOFs of the SALL integration (Figure 14).
In both the SF and SALL experiments, the EOF 1 mode describes a reduction in the strength
of the ACC, reduced flow from the North Atlantic into the Southern Ocean, and reduced
flow from the Southern Ocean into the Pacific and Indian Oceans (c.f. Figures 12 and 14).
The SF and SALL EOF 1 patterns are highly similar (r = 0.84). In SALL, however, EOFs
1 and 2 do not show an anticorrelation in NADW and AABW formation rates, which was a
prominent characteristic of the salinity oscillator in the SF integration. EOFs 2-4 are quite
different in the two runs.

The first four SALL and SF PC time series shown in Figures 13 and 15 illustrate some
of the differences in the time scales of ocean variability in the two experiments. Although
the low-frequency parts of PCs 1 and 2 describe an oscillatory system, this is less clear in
the SALL experiment than in the case of the SF experiment, particularly for PC 2. The
spectra of the first four SALL PCs (not shown) are red with discrete peaks at ca. 500
years, indicating that the dominant modes of the SALL experiment describe the long-period
fluctuations in deep-ocean temperature and salinity, strength of the ACC, ete. (see Figure
). This is some 50% longer than the time scale of the EOF 1 and 2 modes in the SF

experiment,

More detailed analyses, making full use of pattern information rather than only spatially-
integrated quantities, will be required in order to determine whether the dominant modes of
variability in the two stochastic forcing experiments are indeed related to the same physical
mechanisms,

SCENA and 2xC0; Ezperiments

We also computed EQFs from the 15 spatially-averaged ocean time series in the 100-year
SCENA experiment and in a 100-year experiment with step-function doubling of atmaspheric
CO; (see Cubasch et al., 1992). Here we show results for the 2xCO; experiment only, but
note that the SCENA results are very similar. Signal anomalies were defined according to
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Definition 2, and were normalized by both the standard deviations of the SF and SALL time
series [s(z) in (2)]. This facilitates the direct comparison of signal and noise, and has the
effect of reducing those components of the signal which are small relative to the variability
in the SF or SALL experiments. EOFs were then computed as described in Section 5.1.

Since the variability in the SF and SALL experiments is very different, normalization of
signal anomalies by the SF standard deviations series yields an EOF 1 pattern which is only
weakly similar (r = 0.57) to the EOF 1 pattern obtained using SALL s(z) values (see results
for “unrotated guess” in Figures 16a,b). In each case, howevér, the first mode is dominant,
explaining > 70% of the variance. This mode basically describes the change in mean state.

For the signal normalized with respect to the variance in the SF experiment (Figure 16a),
‘the most pronounced feature of EOF 1 is the high negative loading on NADW formation
rate, with attendant positive loadings on the heat fluxes from the ocean to the atmosphere
in the North Atlantic. Note that although there are large reductions in the rate of AABW
formation in both the 2xCO; and SCENA experiments (ca. 45 x 10'3W and 70 x 103W;
reductions of nearly 20% and 30%, respectively, relative to the CTL mean state; see Figures
3 and 4 for SCENA results), these changes are small relative to the large variability of this
quantity in the SF experiment (Table 1). '

Normalization by the standard deviations from the SALL experiment yields an EOF 1
pattern with more structure, i.e., a more uniform distribution of loading over all indices
(cf. Figures 16a,b). This mode reflects the reduced formation rate of both NADW and
AABW, with attendant increases in heat fluxes from the ocean to the atmosphere in the
North Atlantic and Antarctic, reduction in the strength of the ACC, and a decrease in the
inflow of NADW from the Atlantic into the Southern Ocean (recall that southward transport
in negatively defined, so poéitive values of streamfunction at 1.5 and 2.5 km depth in the
Atlantic indicate smaller negative values and decreased southward transport). The strongest
signature is the decreased trahsport from the Southern Ocean into the Pacific and Indian

Oceans.

Mikolajewicz et al. (1990) have also used the LSG OGCM in two uncoupled ‘pseudo-
transient’ greenhouse warming experiments. In these integrations the ocean model was forced
by equilibrium patterns of surface temperature change resulting from 2xCO, runs performed
with AGCMs with mixed-layer oceans. The time-dependence was achieved by scaling these
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patterns using an exponential function and time constants of 40 and 80 years. The dominant
EOF 1 modes computed from these experiments (not shown) are generally very similar to
those obtained in the 2xCO; and SCENA integrations.

5.3 Projections in 2-D EOF Space

Before proceeding to the calculation of detection periods and times for multivariate ocean
data, it is useful to first visualize the evolution of the multivariate SCENA signal in the
space of the SF and SALL EOFs (following Preisendorfer, 1988, and Santer et al., 1994).
Far this purpose. we compute anomalies {according to Definition 2] of the SCENA ocean
data, normalize with both the SF and SALL noise as in (2}, and then project the normalized
anomalies onto the EDFs of the SF or SALL experiment, e;{z}, to form the time series by(t):

bi(t) = ifrl[.r,i}ti{:‘,l , J=LlLp;t=1,100 (7)
#=1

where j{z.,t) are the normalized anomalies from the SCENA experiment.

Figure 17a shows the projection of the normalized SF and SCENA anomaly data onto
EOFs 1 and 2 of the SF experiment. This is a way of comparing the joint evolution of the
multivariate signal and noise data in time and space (see Preisendorfer, 1988; Santer et al.,
1994). Each symbol on the figure represents one year of the SCENA or SF experiment, and
the symbols in consecutive years are linked by lines, In the SF experiment, these lines define
the trajectory of the 320-year ocean circulation oscillator in the EQF 1-EOF 2 plane: the
outer “loops™ are traced when the oscillator is in “on” mode, and the trajectories collapse
towards the center of the figure at times when the oscillator is in “off” mode. A similar
picture was obtained by Mikolajewicz and Maier-Reimer (1991) in scatterplot of the real
and imaginary parts of the POP coefficients for their salinity oscillator,

If the multivariate ocean signal in the SCENA experiment showed no evidence of the
types of interrelationships (between different ocean variables and different ocean basins)
found in the EOFs 1 and 2 of the SF integration, its loadings on these EQOFs would be
close to zero. Clearly, this is not the case: the SCENA data have small but non-zero
loadings on both EOFs 1 and 2 (Figure 17a). This is not surprising, since EOFs 1 and
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9 describe fundamental features of the ocean circulation — such as the coupling between
NADW and AABW formation rates and ocean-atmosphere heat fluxes - which exist also in
the greenhouse warming experiment. We conclude, therefore, that the SCENA signal and the
SF variability have some common components, although pattern correlations between EOF1
of SCENA and EOFs 1 and 2 of the SF experiment show that these common components
are very small (rgpe,scEnae = 0.16; Tspe:ScENAn = 0.19). The fact that the signal does not
emerge from the ‘noise cloud’ is due to both weak similarity of dominant signal and noise
patterns and the fact that the amplitude of changes in common components is much larger
in the SF experiment than in the SCENA integration.

When projected onto EOFs 3-4 of the SF experiment, the SCENA data show much less
overlap with the natural variability noise cloud (Figure 17h). Most of the separation is in the
plane of EOF 3, where the Scenario A projections are generally larger than the projections
of the SF data. This is principally due to the fact that the NADW and AABW changes are
- the same direction and are important components of EOF 3 in the SF experiment (see
Figure 12b), and are also a prominent feature of the ocean signal in the SCENA experiment
(rsFeyscENAs = 0.69). Thus the SCENA ocean signal should be easier to discriminate from
the natural variability noise in the EOF 3 plane of the SF experiment, where the amplitude
of the signal is larger than the amplitude of the noise.

A rather different result is obtained when the SCENA ocean data (normalized by the
SALL noise) are projected onto EQOFs 1 and 2 of the SALL experiment (Figure 18). Both
signal and noise data were low-pass filtered in order to better display the oscillatory behavior
of the SALL integration in the EOF 1-2 plane and the development of the SCENA signal.
The signal clearly emerges from the natural variability noise cloud after 50 years, with
virtually all of the separation occurring in the EOF 1 plane. This suggests that, unlike the
SF case, the EOF 1 plane of the SALL integration is a direction in which the signal can be
well-represented (rsalie, SCENAs = 0.69). and is considerably larger than the noise.

If signal and noise are unfiltered (not shown) the high-frequency noise iz large and com-
pletely obscures the oscillatory behavior of the SALL integration. Even in the unfiltered
data. however, there is clear separation of signal and noise after roughly 55-60 years.
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5.4 Estimates of Detection Period and Time: Unrotated Guess

The detection periods and times given in Section 4 were univariate estimates computed for
individual ocean circulation indices. In this section, we consider whether earlier detection of

an ocean greenhouse warming signal can be achieved using a multivariate approach.

The application of a ‘naive’ multivariate approach, which makes no attempt to filter out
those signal components which are contaminated by natural variability noise, is inefficient.
This is due to the fact that the addition of each new variable to a multivariate detection
vector generally adds more noise information than signal information - the needle in a
haystack problem. But we can improve our chances of finding the needle by using a prior:
information in order to make an intelligent “guess” about its location. Modification of the
guess (e.g., by rotation in a direction where the signal is large and/or the noise is small)
may further improve the probability of detecting the needle. The rotated guess is essentially
a type of pattern filter for removing signal components which are similar to components of
the dominant natural variability noise patterns. Results for the case of an unrotated guess
are given in this section, while the following section presents results for a rotated guess.

Let us first assume that we have some “first guess” as to the nature of the expected
greenhouse warming signal in the ocean. The term “guess” is appropriate — we cannot
know the exact direction of the signal, since so far we lack any independent information on
the climatic changes induced in the ocean by an enhanced greenhouse effect. We therefore
‘stipulate that the guess must be derived from an independent experiment or independent
model (i.e., an experiment different from the one for which we are trying to detect a signal).
Here, our first guess is simply EOF 1 of the Cubasch et al. (1992) 2xCO. experiment. We
shall operate primarily in the EOF coordinate space of the SF experiment, but consider also
results for the EOF coordinate space of the SALL experiment.

The multivariate detection problem can now be reduced to the univariate problem by
projecting the multivariate anomaly time series from the SF and SCENA experiments (nor-
malized by the standard deviations of the SF time series) onto the guess pattern

P

u(t)= 3 He,ex) , t=leon ®)

=1
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and

u{i]:f:j[.t,l}g{tj , t=1,...,100 (9)
=]

where #(z,1) and §(z,t) are the normalized SF and SCENA anomalies, respectively, and
g{x) is the guess pattern (EOF 1) derived from the 2xC0; experiment.

As in the univariate case (Sections 4.3 and 4.4), we can then compute the standard errors
e, for u(f), the actual signal trends & for v(t), and a range of linear signal growth rates, 5,
based on the 100-vear linear trend in v(t). The signal-to-noise ratios 3/¢; and §;/e: are again
a funetion of the length of the time chunk or interval considered, L;, with L; = ¢ x 10, and
1=1,2...,10 Detection periods and times are then defined as in the univariate analysis.
We also present detection time results for the EIN ocean signal (expressed relative to the
decade 1985-904) and for both definitions of the SCENA signal.

The multivariate analysis with a ‘raw’ (unrotated) guess reveals a sensitivity of detection
period to the SF versus SALL ocean variability differences similar to that found in the
univariate case, For all growth rates, detection periods are consistently shorter for the SALL
noise (10-45 years) than for the SF noise (20-70 years; see Table 2), Detection periods for
multivariate signals and noise are generally shorter than those obtained in the univariate
analysis, at least for growth rates of 3 x 0.5 and 7 % 1.0 (and excluding again univariate
results for North Atlantic ice volume because of drift problems),

Differences in the detection periods are due solely to the SF versus SALL differences in
variability and in the guess patterns onto which the multivariate noise is projected (Figure
16). SF versus SALL differences in detection time, however, are more difficult to interpret,
since they incorporate the additional effect of different signal evolution rates - i.e., the
evolution rates for the multivariate signal are not identical in the coordinate spaces of the 5F
and SALL variability. In contrast to the detection period, there is no evidence that detection
times are shorter if noise estimates are based on the SALL experiment, a result which must
be due to differences in signal evolution (Table 3). Signal-to-noise ratios, however, tend to
be higher in the SALL experiment (cf. Figurez 19a,b). The longer detection times for the
SCENA signal relative to the SALL noise are due to a small signal evolution rate after 50
years. which causes the signal-to-noise ratio to dip just beneath the 5% significance threshold
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(Figure 19b).

In most cases, the multivariate analysis yields detection times which are shorter than or
close to those obtained in the univariate analysis (Table 3). The exception is the SCENA
signal and SALL noise, with detection times of 55-60 years. This result is due in part to the
fact that the projection of the multivariate signal onto the unrotated first guess pattern has

smaller signal-to-noise ratios than some of the individual components of the signal vector.

An interesting result is the reduction in detection time which is achieved by use of the
EIN ocean signal rather than the SCENA signal. (It is appropriate to compare the EIN
results with the results for SCENA Definition 1 in Table 3). For the unrotated guess, the
reduction is from 35 to 30 years for the SF noise and from 60 years to 30 years for the
- SALL noise. One reason for the larger reduction in detection time for the SALL noise is that
changes in Pacific and Indian Ocean transports are important components of the unrotated
guess (in the SALL coordinate space; see Figure 16b). The univariate analysis revealed that
changes in these components are detectable 35-40 years earlier in the EIN-experiment (Table
3). In contrast, the dominant component of the unrotated guess in the SF coordinate space
is the change in NADW formation (Figure 16a), which is not detectable earlier in the EIN

experiment.

We can also ask whether the drift and/or low-frequency natural variability which charac-
terizes the first 100 years of the CTL experiment would have been detectable relative to the
SF and SALL natural variability noise. To address this question we defined CTL anomalies
according to Definition 1. Anomalies were then normalized relative to the SF and SALL
standard deviations, and projected onto the respective guess patterns, as in (9). Detection
times were then computed in the usual way. The ocean changes in the first hundred years
of the CTL experiment (Figure 19¢) are clearly below the threshold of detectability relative
to the SF noise, but would be detectable after only 10 years relative to the SALL stan-
dard errors (Figure 19d). The ocean changes in the second and third centuries of the CTL
experiment are not significant, independent of the experiment chosen to estimate the noise.
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5.5 Estimates of Detection Period and Time: Rotated Guess

Finally, we consider whether we can further improve signal-to-noise ratios and achieve earlier
detection by rotating the guess in the direction of low noise components of the two stochastic
forcing experiments. We stress that the rotation takes into account only the spatial and not
the temporal properties of the noise: we are not rotating the guess in the direction of

frequency bands where the noise has low energy (see Hasselmann, 1993).

The rotated guess g*(z) is obtained by weighting the coefficients

;=Y 9@)ei@) » F=1,....p (10)

=1

for the representation of the 2xCO, multivariate guess, g(z), in the space of the EOFs e;(z)

of the SF stochastic forcing experiment by the inverse of the noise eigenvalues, l;.

g'(z) = Zp:ajej(:v)lj'l , T=1,...,p - (11)

j=1-

As in (8) and (9), we then project the multivariate anomaly time series from the SF and
SCENA (or EIN) experiments onto the rotated guess, and use the resulting coefficent time
series u*(t) and v*(t) to cor_ﬁpute the standard errors and linear trends required to obtain
the signal-to-noise ratio §;/e; and detection time. We can also use v*(t) to derive the range
of linear signal growth rates required for computinig 3/¢; and detection period. We similarly
compute B/e; and B;/e; for signals, guess and noise expressed in the coordinate space of |
SALL variability. ' '

The unrotated and rotated guess patterns for the SF and SALL stochastic forcing experi-
ments are shown in Figure 16. For the SF experiment, the rotated and unrotated guesses are
dissimilar (rgpg,y+ = 0.24). The rotation is away from the direction of simultaneous changes
in NADW formation and ocean-atmosphere heat fluxes in the North Atlantic (a high noise
component) and towards changes in streamfunction in the Pacific and Indian Oceans. The
most significant feature of the rotation is the change in sign of the deep Pacific and Indian
inflow. The rotated guess shows different signs for the inflows below 1500 and 2500m depth.
Thus the rotation leads to a detection paticrn that monitors changes in the depth of the
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- inflow (towards a deeper inflow) rather than changes in the absolute amount of the inflow.

In the SALL experiment (Figure 16b) the rotated and unrotated guesses show some
similarity (rsapLg.g = 0.55), suggesting that the guess is already in a low noise direction.
The principal modification to the guess is the higher weighting given to mass transport below
2.5 km in the Atlantic, again monitoring changes in the depth of the outflow. In the Pacific
and Indian Oceans the weighting reduces the impact of deep inflow.

The detection periods for the optimized case are given in Table 2. Rotation of the guess
pattern yields significant decreases in detection period for the SF noise (from 20-70 years to
10-45 years) but no change or even a slight increase for the SALL noise (from 10-45 years to
10-55 years). This supports our result that in the coordinate space of the SALL variance, the
unrotated guess from the 2xCO; experiment (Figure 16b) is already in a low noise direction
relative to the SALL noise. The large decreases in detection period for the SF noise are in
part related to the differences in the eigenvalue spectra of the two experiments (Figure 20).
Relative to the SALL experiment, the SF integration concentrates more of the total space-
time variance in the first two modes, and has much lower variance in the highest-numbered
modes. The SALL integration has a much flatter eigenvalue spectrum. Rotation therefore
has a bigger effect in SF because of its larger range in /; values as j increases. The fact that
rotation of the guess actually increases the detection period for one particular case (8 x 0.5,
~ SALL noise) shows that rotation in space alone does not guarantee an improvement of the

signal-to-noise ratio for a time-dependent signal.

Detection times for the rotated case are given in Table 3. For the SCENA signal, rotation
substantially decreases detection times, both for the SF noise (from 35 years to 10 years) and
the SALL noise (from 55-60 years to 10-45 years). In the case of the SF noise this result is
due to large increases in §;/e; at all chunk lengths (Figure 19a). For the SALL noise, rotation
does not increase f§;/¢; at all chunk lengths (Figure 19b), and the reduction in detection time
is due to an increase of f;/¢; at a chunk length of 50 years. These results substantiate the
conclusions from our analysis of detection period: rotation of the guess tends to produce

larger increases in signal-to-noise ratio for the SF noise than for the SALL noise.

For the EIN signal, optimization yields only a slight reduction in detection time for
the case of SF noise (from 30 to 25 years), and has no impact in the case of SALL noise
(30 years; Table 3). This illustrates again that for a time-evolving signal, full space-time
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optimization will generally be needed to enhance the signal-to-noise ratios. The ‘optimized’
detection time for the EIN signal is longer than for the SCENA signal in the case of the SF
noise (25 years versus 10 years), but the reverse is true for the SALL noise (30 years versus
45 years; recall that the EIN results should be compared with Definition 1 of the SCENA
signal). As noted in the previous Soclion, we suspect that the explanation for this result
lies in the comparatively larger signals in the Pacific and Indian Ocean transport decreases
in the EIN experient. These components are all of the same sign in the rotated, SALL-
normalized guess (Figure 16b), and hence the EIN signal projects well onto this pattern, but
have different signs in the rotated, SF-normalized guess so that the EIN signal is distorted
in this representation (Figure 16a).

5.6 Summary of Multivariate Detection Aspects

Our results suggest that a multivariate description of signal and noise and the use of a guess
pattern generally vields higher signal-to-noise ratios and shorter detection periods and times
than a univariate approach, even when the guess pattern is not optimized by rotation in
the direction of low-noise components. Optimization of the signal-to-noise ratio by simple
spatial rotation yields significant further improvements in detection period and time for the
SF noise and SCENA signal, but does not substantially improve the signal-to-noise ratios
of the SCENA or EIN signals in the EOF coordinate space of the SALL noise, This implies
that the unrotated guess (when normalized by the SALL variability) is already in a low-noise
direction. The EIN signal can be detected earlier than the SCENA signal in the unrotated
case (independent of the experiment used to estimate the noise), but the benefit of the earlier
etart date is less clear in the rotated case. Finally, our results show that spatial rotation
alone does not guarantee an improvement of the signal-to-noise ratio for a time-evolving
signal. This can be achieved only with an optimization strategy which accounts for the full
space-time characteristics of the signal, noise, and guess.

6 Summary and Conclusions

In this study, we have been concerned with the detection of oceanic greenhouse warming
signals, The ocean responses which we examined were the spatially-averaged changes in such
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circulation indices as temperature, salinity, ice volume, heat and fresh water fluxes, loss of
potential energy by convection, and transports of mass. We currently lack the technology to
obtain reliable measurements of these large-scale averages in the real world, so that the focus
of this study was necessarily on methodology and the identification of sources of uncertainty
in model estimates of ocean greenhouse warming signals and the noise levels of natural
variability. However, the approach outlined here could have important practical applications
for the proposed measurement of ocean-basin acoustic travel times as indicators of climate

change.

The analysed ocean signals were taken from recent time-dependent greenhouse warming
experiments Cubasch et al. (1992; 1994a.b) with the Hamburg ECHAM-1/LSG coupled
atmosphere/ocean GCM, in which the response of the climate system to the time-varying
greenhouse gas increases specified in Scenario A of the IPCC (Houghton et al., 1990) was
simulated. Two long simulations were carried out: SCENA, with greenhouse-gas forcing
from 1985 to 2085, and EIN, with forcing from 1935 to 2085. In addition, three 50-year
so-called Monte Carlo simulations were made to study the impact of the natural variability
on the signal,

We first considered the signal-to-noise ratio of the linear trend # in an ocean signal from
the greenhouse warming experiment to the standard error £ of the sampling distribution of
linear trends due solely to internally-generated variability of the coupled atmosphere-ocean
system. To estimate £, we used results from two long stochastic forcing experiments in
which the uncoupled LSG ocean model was forced by noise superimposed on climatological

boundary conditions.

In the first experiment, SF (Mikolajewiez and Maier-Reimer, 1990), the ocean model was
forced by temporally white but spatially correlated monthly anomalies of fresh water fluxes,
superimposed on the prescribed climatological fresh water fluxes. In the second experiment,
SALL (Mikolajewicz and Maier-Reimer, 1993), the stochastic component included heat fluxes
and wind stress as well as fresh water fluxes. Another important difference was a reduection
of the temperature feedback factor in this experiment by 2/5 (5 months relaxation constant
instead of 2 months for SF).

The ocean variability was significantly lower in the SALL experiment than in the SF
experiment. For example, the variability in a key diagnostic of the ocean circulation - the
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transport of mass through the Drake Passage - was roughly a factor of seven lower in the
SALL experiment. There were also other qualitative differences between the two experiments,
Thus variance spectra from the SF experiment were typically red for most circulation indices,
with power increasing towards low frequencies for time scales up to several centuries, and a
pronounced spectral peak at ca. 320 years, corresponding to the salinity oscillator identified
by Mikolajewicz and Maier-Reimer (1990, 1991). In the SALL experiment, a discrete peak
was found at 500 years for only a few circulation indices, and the spectra tended to be whiter:
the noise on time scales less than 10-30 years was much larger in the SALL experiment than
in the SF integration, while the reverse was true for variability on century time scales, The
spectra for ocean diagnostics from a 300-year control run performed with a fully-coupled
atmosphere-ocean model (Cubasch et al., 1992) were generally more similar to those of the
SALL experiment in the frequency range where the integrations overlapped.

The differences in ocean variability in the SF and SALL experiments translate into large
uncertainties in values of the standard error, £, on time scales of 10-100 vears. Values of ¢ for
individual ocean indices in the two stochastic forcing experiments differ in either direction by
up to an order of magnitude. Thus even if the space-time evolution of an ocean greenhouse
warming signal were perfectly known, the uncertainties in standard error estimates result in
large uncertainties in signal detectability.

To study the impact of such uncertainties on signal detectability, we introduced the
concepts of detection period, T}, and detection time, T,. The detection period Ty is defined
as the length of a climate time series {a “chunk length” ) which must be available in order ta
detect a given linear trend in the presence of the natural elimate variability. The detection
period is defined in model years and is independent of reference time and the real time
evolution of the signal. It is determined by the signal-to-noise ratio B/ e for some prescribed,
time-invariant signal trend 3. We selected 7 to be the mean growth rate which yields the
change in a given ocean variable at the end of the SCENA experiment.

In contrast, detection time T; represents the actual time at which a particular time-
dependent signal, with changing growth rate 3, is detectable. In the present case of simulated
data, it depends on the experiment’s start date. Since both the trend-noise £ and the signal
growth rate # are changing with time for a given global warming scenario, it is useful to
first characterize the noise properties in terms of the detection period T, for given 7 before
considering the impact of changes in both on T;. Thie enables one to determine whether an
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increase in signal-to-noise ratio is ptimaiily due to changing noise properties or changes in

the signal trend with increasing time.

We computed detection periods and times both for univariate data (individual circulation
indices) and for multivariate signals and noise. For the univariate analysis, we found a strong
sensitivity of T, and Ty to the stochastic forcing experiment used to’ estimate the natural
variability noise. The univariate detection period results indicate that for the SF noise, less
than one-third (19 of 63) of the assumed mean growth rates B were detectable within 100
years, while over two-thirds (45 of 63) of the growth rates could be detected within 100 years
for the SALL noise. Detection periods were conéistently longer if the noise was estimated
from the SF integration, with the exceptions of North Atlantic ice volume and strength of
NADW formation (where the SALL experiment had greater variability on the 10-30 year
time scale). Similarly, the univariate detection time results showed that the SCENA and
EIN signals could be detected within 100 years in only 7 of 45 cases for the SF noise but in
31 of 45 cases for the SALL noise. In general, circulation indices which are highly sensitive to
surface conditions, such as strength of NADW formation and ocean-atmosphere heat fluxes,
tended to have shorter detection periods and times than changes in deep-ocean temperature

and salinity.

We also showed that detection times are sensitive to uncertainties in the time evolution
of a greenhouse warming signal. We illustrated signal uncertainties in three ways. First,
we found that two alternative choices of the climate response signal, depending on different
assumptions regarding the correlation of the variability in the coupled control run and the
greenhouse warming experiment, had a large impact on univariate detection times. Second,
by considering both the EIN and SCENA experiments (with start dates in 1935 and 1985,
respectively), we were able to study the effect of the cold start error on univariate detection
times. For most ocean variables, the EIN signals were detectable earlier than the SCENA
signals, as expected, with the largest improvements for mass transport through the Drake
Passage (70 years earlier) and transports in the Pacific and Indian Oceans (35-40 years
earlier). Third, we examined the ocean signals in a suite of three 50-year greenhouse warming
experiments with identical greenhouse-gas forcing, but each starting from different initial
conditions of the CTL integration, and thus with different manifestations of broad-band

natural variability superimposed on the true, underlying signal. Our results indicate that

the “between realization” signal variability can be large for certain ocean circulation indices, = §

so that a single greenhouse warming integration of limited duration may yield a misleading
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estimate of detection time.

We also investigated whether it was possible to achieve shorter detection times for an
ocean greenhouse warming signal by considering the time evolution of a multivariate detec-
tion vector rather than of individual variables, The multivariate analysis was carried out
in the EOF space of the spatially-averaged ocean circulation indices in the two stochastic
forcing experiments. The EOFs carry some spatial information (at the scale of entire ocean
basins), but, more importantly, convey information about the relationships between different
ocean variables. The first two SF EOFs capture basic features of the “salinity oscillator”
identified by Mikolajewicz and Maier-Reimer (1990), and clearly show that this mode is
multivariate and global in scale. The dominant modes of variability of the SALL experiment
have a somewhat different structure. In particular, the SALL EOF 1 vector is in a direc-
tion in which the multivariate ocean signal can be reasonably well-represented and is large
relative to the low-frequency noise.

Projection of the multivariate ocean data from the SCENA, SF and SALL experiments
onto a “guess pattern” (obtained from an independent €O, doubling experiment) yielded
detection times as short as 35-60 years for the SCENA and EIN signals. Our results sug-
gest that a multivariate description of signal and noise and the use of & guess pattern can
yield higher signal-to-noise ratios and shorter detection periods and times than a univariate
approach.

The signal-to-noise ratio can be further enhanced by rotating the guess in the direction
of low-noise components. With spatial rotation of the guess, we achieved detection times of
only 10 years for the SCENA signal (according to our preferred Definition 2), independent of
the experiment used to estimate the noise. However, the optimization did not substantially
improve signal-to-noise ratios for the SCENA or EIN signals in the coordinate space of
the SALL noise. This suggests that the unrotated guess (when normalized by the SALL
variability) is already in a low-noise direction. The EIN signal can be detected earlier than
the SCENA signal in the non-optimized case (independent of the experiment used to estimate
the noise), but the benefit of the earlier start date is less clear in the optimized case,

A few examples in which spatial rotation actually slightly increased the detection time
demonstrate that spatial rotation alone does not guarantee an improvement of the signal-
to-noise ratio for a time-evolving signal. A fully consistent optimization strategy requires
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rotation in space and time {Hasselmann, 1993). Work on this general approach is currently

in progress.

Qur analysis highlights the need for improved estimates of long-term ocean variability.
At present, it is difficult to obtain reliable estimates of century time scale ocean noise from
paleoclimatic data (Santer et al., 1993). We must therefore rely on model simulations for
such information, The S5F and SALL stochastic forcing experiments indicate that the model-
derived estimates of decadal- to century-time scale noise are highly sensitive to the precise
specification of the forcing. It is not clear at this time whether this sensitivity is primarily
due to changes in the mean circulation, the mixed boundary condition, the amplitude, tem-
poral coherence, or spatial pattern of the forcing, or whether it is due to the fact that the
stochasticity in the SALL experiment applies to all forcing terms rather than fresh water
fluxes alone. Further experiments - covering a range of amplitude values-and space-time cor-
relation scales for the forcing terms, and including different flux feedback parameterizations —
are required in order to better understand such sensitivity (Mikolajewiez and Majer-Reimer,
1991, 1994; Barnett et al., 1993).

Differences between the variability in fully coupled and uncoupled integrations consitute
another source of uncertainty in model-based estimates of low-frequency noise, It is evident
from the spectra of the coupled model control run (CTL) that the incorporation of full at-
mospheric feedback may significantly modify the spatio-temporal ocean variability simulated
in idealized stochastic forcing experiments which neglect such feedback. Further sources of
“noise uncertainty”, which we have not discussed here, include possible model-dependence
and sensitivity to different resolutions (Covey, 1993) or parameterizations (Zebiak and Cane,
1991).

The reduction of such noise uncertainties will require a full program of numerical ex-
perimentation, as well as a concerted effort to construct a better paleoclimatic data base
for ‘constraining’ model noise estimates. The stochastic forcing experiments imply phase
relationships between the variability displayed in different ocean basins, the North Atlantic
and Antarctic, etc. Potentially, these relationships should be testable given appropriate
paleoclimate data (Crowley and Kim, 1993). One problem which such validation studies
must address is that the model noise represents unforced variability only, whereas observed
low-frequency variability reflects the variance associated with a complex mixture of external
forcing factors (solar, volcanic aerosols, etc.) and the internally-generated variability of the
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coupled atmosphere-ocean system.

In conclusion, we note that for an optimally rotated guess pattern we estimated a detec-
tion time of 10 years for the SCENA ocean signal (at a 5% confidence level) relative to a
starting date of 1985, If our SCENA experiment were taken literally, this would be today.
Although the ocean circulation indicies we considered have not been monitored in the past
and cannot be readily monitored in the future, our results can presumably be applied to
gcean acoustic travel times, which can be monitored. However, this conclusion is burdened
by very severe caveats regarding both the estimate of natural oceanic variability and the
estimate of the true ocean signal from a limited number of realizations. This should provide
a strong motivation for future studies of this question.
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SF STOCHASTIC FORCING EXPERIMENT
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Figure 1: Time series of spatially-averaged ocean variables from the 3,800-year stochastic forcing
experiment ("SF") performed by Mikolajewicz and Maier-Reimer (19907, All values are annual
means, Note that the oceanic response to the fresh water flux forcing is characterized by variability
on time scales of several centuries. This is the signature of the 320-year ocean circulation mode
identified by Mikolajewicz and Maier-Reimer.
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SALL STOCHASTIC FORCING .‘EXPERIMENT
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Figure 2: Time series of spatially-averaged ocean variables from the 8,000-year stochastic forcing
experiment (‘SALL’) performed by Mikolajewicz and Maier-Reimer (1994). Results are annual
means for the same ocean variables displayed in Figure 1. For details of the forcing, refer to Section
2.3. The ocean variability simulated in the SALL experiment is very different from that generated
in the original SF experiment. Although there is some long-period variability in such quantities as
mass transport through the Drake Passage and globally-averaged deep-ocean temperature, the
amplitude of these oscillations is much smaller than in the SF experiment (c.f. Figures 1 and 2) and
their period is considerably longer than 300 years.
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OCEAN RESPONSE: SCENA & CTL
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Figure 3: Time series of spatially-averaged occan variables from the 300-year control run (*CTL"
and the 100-year Scenario A greenhouse warming experiment (*SCENA") performed with the
ECHAM-1/LSG coupled atmasphere-ocean model (Cubasch et al., 1992}, All values are annual
means, In the control run, ice volume and globally-averaged temperature show behavior congistent
with a drift interpretation, while mass transport through the Drake Passage, ocean-gimosphere hea
fluxes, and North Atlantic Decp Water (NADW) formation rate are guasi-stationary,
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SCENA ANOMALIES (DEFINITIONS 1 & 2)
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Figure 4: Greenhouse warming signals for spatially-averaged occan varigbles from the 100-ycar
SCENA experiment (Cubasch et al., 1992). Resulis are for two different definitions of the signal.
Definition 1 expresses the greenhouse warming signal relative 10 the smoothed initial state of the
coupled model control run. Under Definition 2 the signal is computed relative (o the INSLantaneous
state of the control run. All values are annual means. Due 1o the non-stationarity of ice volume and
deep-ocean temperature (see Figure 1), the signals for these quantities are sensitive 1o the choice
of definition.
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SCENA & EIN ANOMALIES RELATIVE TO 1985-1994
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Figure 5: Greenhouse warming signals for spatially-averaged ocean circulation indices from the
100-year SCENA experiment (Cubasch et al., 1992) and the 150-year Early Industrialization
experiment (‘EIN’; Cubasch et al., 1994b). The start dates of the SCENA and EIN experiments
were 1985 and 1935, respectively. The EIN experiment uses the observed GHG increases from
1935 to 1985, and GHG forcing identical to SCENA from 1985 to 2085. To compare the experi-
ments on a common basis, the signal anomalies were defined relative to the average over the
decade 1985-1994 of the respective experiment. The earlier starting date reduces the cold start
error for such indices as deep ocean temperature and mass transport through the Drake Passage.
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OCEAN RESPONSE: SCENA & MONTE CARLO EXPTS
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Figure 6: Changes in globally-averaged deep-ocean temperature (6a) and Antarctic Bottom Water
(AABW) formation rate (6b) in the original Cubasch et al. (1992) SCENA integration and in three
‘Monte Carlo’ integrations (MC30, MC60, and MC90; Cubasch et al., 1994a) starting from differ-
ent initial conditions of the CTL experiment. The mean of the three Monte Carlo experiments and
the first 50 years of the Scenario A integration is also shown (MCMEAN). At the end of the
SCENA integration, both variables exhibit clear signals. In the first 3-4 decades, however, the
between-realization variability is as large as the ensemble-average signal after 40 years.
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NON-NORMALIZED SPECTRAL DENSITY: CTL, SF & SALL EXPTS
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Figure 7: Non-normalized power spectra for selected ocean variables from the CTL, SF and SALL
experiments, For the SF and SALL experiments, spectra were chunk-averaged using three and
eight non-overlapping chunks of 1,000 years in length, respectively. For the CTL integration three
non-overlapping chunks of length 100 years were used. Results are for fresh water fluxes (7a) and
atmosphere-ocean heat fluxes (7b) integrated over the entire North Atlantic and Arctic Ocean, and
for mass transport through the Drake Passage (7c). For ocean response lerms, the noise on time
scales less than 10-50 years is much larger in the SALL experiment than in the SF integration,
while the SF experiment shows much greater variability on century time scales.
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LINEAR FITS TO 100-YEAR CHUNKS OF SF DEEP-OCEAN TEMPERATURE DATA
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Figure 8: Least-squares linear trends fitted to non-overlapping 100-year chunks of a time series of
deep-ocean temperature anomalies. Results are from the SF experiment.
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STANDARD ERRORS (g, OF LINEAR TRENDS FROM SF EXPT
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Figure 9: Standard error €; for four different spatially-averaged ocean variables from the SF exper-
iment. Standard errors are shown as a function of increasing chunk length L; for both non-overlap-
ping chunks and chunks which overlap by one year. The overlapping chunks provide a smoother
picture of the decrease in &; with increasing chunk length. The standard errors are a measure of the
variance of linear trends.
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STANDARD ERRORS (g) FOR SF & SALL EXPTS
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Figure 10: Standard errors g; for selected ocean diagnostics from the SF and SALL stochastic forc-
ing experiments. £; is shown as a function of increasing chunk length L;. All values were compated
using overlapping chunks. The standard errors in the 1wo experiments can differ in either direction
by up 1o an order of magnitude.
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SIGNAL-TO-NQOISE RATIOS (B, / ;) FOR UNIVARIATE OCEAN DATA
SIGNALS: SCENA & MONTE CARLO EXPTS. NOISE: SF & SALL EXPTS,
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Figure 11a: Signal-to-noise ratios §; / €; for ocean greenhouse warming signals from the SCENA
and Monte Carlo experiments and standard errors from the SF and SALL stochastic forcing exper-
iments. For a given ocean variable, the signal B; is the slope parameter describing the linear rend
in the ocean time series for chunk lengths 1-10 vears, 1-20 years, etc. All signals are defined
according to Definition 2. The standard error €; is a measure of the variance of linear trends. £; is
computed for chunk lengths corresponding to the signal length, ie., for 10, 20, ..., 100 years. A
signal-to-noise level of 1,96 represents the 5% significance threshold. Resolts are for NADW for-
mation mate and atmosphere-ocean heat fluxes integrated over the North Atlantic.
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SIGNAL-TO-NOISE RATIOS (B,/ ¢) FOR UNIVARIATE OCEAN DATA
SIGNALS: SCENA & MONTE CARLO EXPTS. NOISE: SF & SALL EXPTS.
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Figure 11b: As for 11a, but for globally-averaged temperature at 4 km depth and AABW forma-
tion rate. Note that the SF versus SALL differences in signal-to-noise ratio often exceed an order
of magnitude, and can mean the difference between detection or failure to detect the 100-year
SCENA signal. .
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EOF 1 (EV 56.0%) AND EOF 2 (EV 23.3%) OF SF EXPT
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Figure 12: Multivariate Empirical Orthogonal Functions (EOFs) 1-4 from the SF experiment.
EOFs were computed from the 3,800-year time series for 15 spatially-averaged ocean circulation
indices, and provide information about the covariance between different ocean variables and dif-
ferent regions of the ocean (at the scale of individual ocean basins). The x-axis indicates the ocean
variable (see Table 1 for an explanation of the abbreviations). EOFs 1 and 2 (a) capture features of
the 320-year “salinity oscillator” identified by Mikolajewicz and Maier-Reimer (1990; 1991).
EOFs 3 and 4 (b) may be related to “on” and “off” modes of the salinity oscillator (see Section 5.2).
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AMPLITUDE

AMPLITUDE

PRINCIPAL COMPONENT TIME SERIES 1-4 OF SF EXPERIMENT
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Figure 13: Principal Component (PC) time series 1-4 from the multivariate EOF analysis of the
SF experiment. The PC time series give the amplitude of the EOF 1-4 patterns in the normalized
multivariate ocean data. PCs 1 and 2 (a) oscillate on time scales of several centuries, with maxi-
mum power at approximately 320 years. PCs 3 and 4 (b) show fluctuations on the 1,000-year time
scale. :
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EOF 1 (EV 30.0%) AND EOF 2 (EV 12.8%) OF SALL EXPT
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Figure 14: Multivariate EOFs 1-4 from the SALL experiment. EOFs were computed from the
8,000-year time series for 15 spatially-averaged ocean variables. The x-axis indicates the ocean
variable (see Table 1 for an explanation of the abbreviations). The dominant modes of variability
are very different in the two stochastic forcing experiments (c.f. Figures 12 and 14).
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AMPLITUDE

AMPLITUDE

PRINCIPAL COMPONENT TIME SERIES 1-4 OF SALL EXPERIMENT

PC 1 (EV 30.0%) AND PC 2 (EV 12.8%) OF SALL EXPT.
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Figure 15: Principal Component (PC) time series 1-4 from the multivariate EOF analysis of the
SALL experiment. The PC time series give the amplitde of the EOF 1-4 patterns in the normalized
multivariaie ocean data, PCs 1-4 oscillate on time scales of approximately 500 years. All time
series have been low-pass filiered.
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UNROTATED AND ROTATED GUESS: 2xCO, EXPT, SF NORMALIZATION
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UNROTATED AND ROTATED GUESS: 2xCO, EXPT, SALL NORMALIZATION
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Figure 16: Unrotated and rotated guess patterns, g(x) and g*(x), for multivariate ocean data from
a step-function CO, doubling experiment. The x-axis indicates the ocean variable (see Table 1 for
an explanation of the abbreviations). The unrotated guess is EOF 1 of the 2xCO, integration, with
normalization of ocean anomaly time series by the SF (a) and SALL (b) standard deviations. The
unrotated guesses provides information about the direction of the expected ocean signal. The
rotated guesses are skewed in the direction of the low-noise components of the SF and SALL
experiments. Differences in the guess structures are attributable to differences in the variability in

the SF and SALL experiments.
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PROJECTION OF SCENA MULTIVARIATE OCEAN DATA ON SF EOFS
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Figure 17: Projection of aormalized muoltivariate anomaly data from the SF and SCENA experiments
onio multivariate EOFs 1 and 2 (a) and 3 and 4 (b) of the SF experiment. Each symbol represents one
vear of the 5F or SCEMNA experment; symbols in consaculive vears are joined by lines, The first and Iast
50 years of the SCENA signal have been plotted in different colors to indicate the time evolution of the
sigoal. In the SF experiment, the outer “loops™ define the imjectory iraced by the 320-vear ocean circu-
lation oscillator in the EOF 1-2 plane. Note that the signal does not emerge from the natural variability
noise cloud in the EOF 1-2 plane, but in the EOF 3-4 plane is clearly separable from the noise after only
50 years, with most of the separation in the space of EOF 3.
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PROJECTION OF SCENA MULTIVARIATE OCEAN DATA ON SALL EOFS
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Figure 18: As for 17, but for the projection onto multivariate EOFs 1 and 2 of the SALL experiment.
Both signal and noise data were low-pass filtered in order to better display the oscillatory behavior of the
SALL integration and the development of the SCENA signal. The signal emerges from the natural vari-
ability noise cloud after 50 years, with most of the separation in the EOF 1 plane.
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SIGNAL-TO-NOISE RATIOS FOR MULTIVARIATE OCEAN DATA

——— BGA SIGNAL / SF NOISE (UNROTATED)
- ==~ BABIGNAL / SF NOISE [ROTATED)

2.4 i P 3 | ot} ¥y R o g | R
100.0 Tl T ], T

10.0

S/H RATIO

10 ——— BASIGNAL f SALL NOISE (UNROTATED)
- === BASIGMNAL f8AlL NOISE (ROTATED)

S/N RATIO
=]
2

CTL SIGMNALS [ SF NOISE
{UNROTATED)

CTL SIGNALS / SALL NOISE
(UNROTATED)
i 1 Il | Il il I i i I i 1 L 1 I 1 & & il Il ek L 1 | L i i I i
10 20 30 40 50 B0 Ta ao =0 oo

TREND LENGTH [YEARS)

— CTL YRS 1-100
— CTL YRS 101.200
—— CTL YRS 201-300

Figure 19: Signal-to-noise ratios f; / ¢; for multivariate ocean data. The multivariate ocean signal from the
SCENA experiment and the multivariate noise from the SF and SALL experiments were projected onto unro-
tated and rotated guess pattorns derived from a CO3 doubling experiment (see Figure 16). The guess panerns
provide information about the direction of the expected greenhouse warming signal in the ocean. Rotation of
the guess leads to s substantial increase in ; / ¢; in the case of the SF noise (1), but produces only small changes
in signal-to-noise ratio for the SALL noise (b). If we regard the first 100 vears of the coupled CTL experment
as the "signal’, and project this signal onto the anrotated 2xCO, guess, the ocean cireulation changes in the
CTL would not be detectable relative 1o the SF noise (c), but would be detectable after only 10 years relative
to the SALL noise (d). Linear trends in the second and third centuries of the CTL experiment are within the
noise envelcpe defined by the SF and SALL experiments (c,d).
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EIGENVALUE SPECTRA FOR SF AND SALL EXPERIMENTS
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Figure 20: Eigenvalue spectra for multivariate EOFs from the SF and SALL experiments. EOFs were
computed using normalized ocean data from the 3,800-year SF integration and the 8,000-year SALL
integration. Note that the SF experiment concentrates more of the variance in the first two modes, while
the SALL eigenvalue spectrum is much flatter.
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